
structlog Documentation
Release

Author

September 12, 2013

CONTENTS

i

ii

structlog Documentation, Release

Release v0.1.0 (Installation).

structlog makes structured logging in Python easy by augmenting your existing logger. It’s licensed under the per-
missive Apache License, version 2, available from PyPI, and the source code can be found on GitHub. The full
documentation is on Read the Docs.

structlog targets Python 2.6, 2.7, 3.2, and 3.3 as well as PyPy with no additional dependencies for core functionality.

CONTENTS 1

http://choosealicense.com/licenses/apache/
https://pypi.python.org/pypi/structlog/
https://github.com/hynek/structlog
https://structlog.readthedocs.org

structlog Documentation, Release

2 CONTENTS

CHAPTER

ONE

WHY YOU WANT STRUCTURED
LOGGING

I believe the widespread use of format strings in logging is based on two presumptions:

• The first level consumer of a log message is a human.

• The programer knows what information is needed to debug an issue.

I believe these presumptions are no longer correct in server side software.

—Paul Querna

Structured logging means that you don’t write hard-to-parse and hard-to-keep-consistent prose in your logs but that
you log events that happen in a context instead.

3

http://journal.paul.querna.org/articles/2011/12/26/log-for-machines-in-json/

structlog Documentation, Release

4 Chapter 1. Why You Want Structured Logging

CHAPTER

TWO

WHY YOU WANT TO USE STRUCTLOG

Because it’s easy and you don’t have to replace your underlying logger – you just add structure to your log entries and
format them to strings before they hit your real loggers.

structlog supports you with building your context as you go (e.g. if a user logs in, you bind their user name to your
current logger) and log events when they happen (i.e. the user does something log-worthy):

>>> log = log.bind(user=’anonymous’, some_key=23)
>>> log = log.bind(user=’hynek’, source=’http’, another_key=42)
>>> log.info(’user.logged_in’, happy=True)
some_key=23 user=’hynek’ source=’http’ another_key=42 happy=True event=’user.logged_in’

This ability to bind key/values pairs to a logger frees you from using conditionals, closures, or boilerplate methods to
log out all relevant data.

Additionally, structlog offers you a flexible way to filter and modify your log entries using so called processors before
the entry is passed to your real logger. The possibilities include logging in JSON, adding arbitrary meta data like
timestamps, counting events as metrics, or dropping log entries caused by your monitoring system.

5

structlog Documentation, Release

6 Chapter 2. Why You Want to Use structlog

CHAPTER

THREE

WHY YOU CAN START USING
STRUCTLOG TODAY

• You can use both your bare logger and as well as the same logger wrapped by structlog at the same time.
structlog avoids monkeypatching so a peaceful co-existence between various loggers is unproblematic.

• Events are free-form and interpreted as strings by default. Therefore the transition from traditional to structured
logging is seamless most of the time. Just start wrapping your logger of choice and bind values later.

• If you don’t like the idea of keeping the context within a local logger instance like in the example above, structlog
offers transparent thread local storage for your context.

Intrigued? Get started now or have a look at more realistic examples and be completely convinced!

7

structlog Documentation, Release

8 Chapter 3. Why You Can Start Using structlog TODAY

CHAPTER

FOUR

USER’S GUIDE

4.1 Getting Started

4.1.1 Installation

structlog can be easily installed using:

$ pip install structlog

Python 2.6

If you’re running Python 2.6 and want to use OrderedDicts for your context (which is the default), you also have
to install the respective compatibility package:

$ pip install ordereddict

If the order of the keys of your context doesn’t matter (e.g. if you’re logging JSON that gets parsed anyway), simply
use a vanilla dict to avoid this dependency. See Configuration on how to achieve that.

4.1.2 Your First Log Entry

A lot of effort went into making structlog accessible without reading pages of documentation. And indeed, the simplest
possible usage looks like this:

>>> import structlog
>>> log = structlog.get_logger()
>>> log.msg(’greeted’, whom=’world’, more_than_a_string=[1, 2, 3])
whom=’world’ more_than_a_string=[1, 2, 3] event=’greeted’

Here, structlog takes full advantage of its hopefully useful default settings:

• Output is sent to standard out instead of exploding into the user’s face. Yes, that seems a rather controversial
attitude towards logging.

• All keywords are formatted using structlog.processors.KeyValueRenderer. That in turn uses
repr() to serialize all values to strings. Thus, it’s easy to add support for logging of your own objects.

It should be noted that even in most complex logging setups the example would still look just like that thanks to
Configuration.

There you go, structured logging! However, this alone wouldn’t warrant its own package. After all, there’s even a
recipe on structured logging for the standard library. So let’s go a step further.

9

http://en.wikipedia.org/wiki/Standard_out#Standard_output_.28stdout.29
http://docs.python.org/2/reference/datamodel.html#object.__repr__
http://docs.python.org/2/howto/logging-cookbook.html

structlog Documentation, Release

4.1.3 Building a Context

Imagine a hypothetical web application that wants to log out all relevant data with just the API from above:

from structlog import get_logger

log = get_logger()

def view(request):
user_agent = request.get(’HTTP_USER_AGENT’, ’UNKNOWN’)
peer_ip = request.client_addr
if something:

log.msg(’something’, user_agent=user_agent, peer_ip=peer_ip)
return ’something’

elif something_else:
log.msg(’something_else’, user_agent=user_agent, peer_ip=peer_ip)
return ’something_else’

else:
log.msg(’else’, user_agent=user_agent, peer_ip=peer_ip)
return ’else’

The calls themselves are nice and straight to the point, however you’re repeating yourself all over the place. At this
point, you’ll be tempted to write a closure like

def log_closure(event):
log.msg(event, user_agent=user_agent, peer_ip=peer_ip)

inside of the view. Problem solved? Not quite. What if the parameters are introduced step by step? Do you really
want to have a logging closure in each of your views?

Let’s have a look at a better approach:

from structlog import get_logger

logger = get_logger()

def view(request):
log = logger.bind(

user_agent=request.get(’HTTP_USER_AGENT’, ’UNKNOWN’),
peer_ip=request.client_addr,

)
foo = request.get(’foo’)
if foo:

log = log.bind(foo=foo)
if something:

log.msg(’something’)
return ’something’

elif something_else:
log.msg(’something_else’)
return ’something_else’

else:
log.msg(’else’)
return ’else’

Suddenly your logger becomes your closure!

For structlog, a log entry is just a dictionary called event dict[ionary]:

• You can pre-build a part of the dictionary step by step. These pre-saved values are called the context.

10 Chapter 4. User’s Guide

structlog Documentation, Release

• As soon as an event happens – which is a dictionary too – it is merged together with the context to an event dict
and logged out.

• To keep as much order of the keys as possible, an OrderedDict is used for the context by default.

• The recommended way of binding values is the one in these examples: creating new loggers with a new context.
If you’re okay with giving up immutable local state for convenience, you can also use thread/greenlet local
storage for the context.

4.1.4 structlog and Standard Library’s logging

structlog’s primary application isn’t printing though. Instead, it’s intended to wrap your existing loggers and add
structure and incremental context building to them. For that, structlog is completely agnostic of your underlying
logger – you can use it with any logger you like.

The most prominent example of such an ‘existing logger’ is without doubt the logging module in the standard library.
To make this common case as simple as possible, structlog comes with some tools to help you:

>>> import logging
>>> logging.basicConfig()
>>> from structlog import get_logger, configure
>>> from structlog.stdlib import LoggerFactory
>>> configure(logger_factory=LoggerFactory())
>>> log = get_logger()
>>> log.warn(’it works!’, difficulty=’easy’)
WARNING:structlog...:difficulty=’easy’ event=’it works!’

In other words, you tell structlog that you would like to use the standard library logger factory and keep calling
get_logger() like before.

4.1.5 Liked what you saw?

Now you’re all set for the rest of the user’s guide. If you want to see more code, make sure to check out the Examples!

4.2 Loggers

The center of structlog is the immutable log wrapper BoundLogger.

All it does is:

• Keeping a context dictionary and a logger that it’s wrapping,

• recreating itself with (optional) additional context data (the bind() and new() methods),

• recreating itself with less data (unbind()),

• and finally relaying all other method calls to the wrapped logger after processing the log entry with the config-
ured chain of processors.

You won’t be instantiating it yourself though. For that there is the structlog.wrap_logger() function (or the
convenience function structlog.get_logger() we’ll discuss in a minute):

>>> from structlog import wrap_logger
>>> class PrintLogger(object):
... def msg(self, message):
... print message
>>> def proc(logger, method_name, event_dict):

4.2. Loggers 11

http://docs.python.org/2/library/collections.html#collections.OrderedDict

structlog Documentation, Release

... print ’I got called with’, event_dict

... return repr(event_dict)
>>> log = wrap_logger(PrintLogger(), processors=[proc], context_class=dict)
>>> log2 = log.bind(x=42)
>>> log == log2
False
>>> log.msg(’hello world’)
I got called with {’event’: ’hello world’}
{’event’: ’hello world’}
>>> log2.msg(’hello world’)
I got called with {’x’: 42, ’event’: ’hello world’}
{’x’: 42, ’event’: ’hello world’}
>>> log3 = log2.unbind(’x’)
>>> log == log3
True
>>> log3.msg(’nothing bound anymore’, foo=’but you can structure the event too’)
I got called with {’foo’: ’but you can structure the event too’, ’event’: ’nothing bound anymore’}
{’foo’: ’but you can structure the event too’, ’event’: ’nothing bound anymore’}

As you can see, it accepts one mandatory and a few optional arguments:

logger The one an only positional argument is the logger that you want to wrap and to which the log entries will be
proxied. If you wish to use a configured logger factory, set it to None.

processors A list of callables that can filter, mutate, and format the log entry before it gets passed to the wrapped
logger.

Default is [format_exc_info(), KeyValueRenderer].

context_class The class to save your context in. Particularly useful for thread local context storage.

Default is OrderedDict.

Additionally, the following arguments are allowed too:

wrapper_class A class to use instead of BoundLogger for wrapping. This is useful if you want to sub-class
BoundLogger and add custom logging methods. BoundLogger’s bind/new methods are sub-classing friendly so
you won’t have to re-implement them. Please refer to the related example how this may look like.

initial_values The values that new wrapped loggers are automatically constructed with. Useful for example if you
want to have the module name as part of the context.

Note: Free your mind from the preconception that log entries have to be serialized to strings eventually. All structlog
cares about is a dictionary of keys and values. What happens to it depends on the logger you wrap and your processors
alone.

This gives you the power to log directly to databases, log aggregation servers, web services, and whatnot.

4.2.1 Shipped Loggers

To save you the hassle of using standard library logging for simple stdout logging, structlog ships a PrintLogger.
It’s handy for both examples and in combination with tools like runit or stdout/stderr-forwarding.

Additionally – mostly for unit testing – structlog also ships with a logger that just returns whatever it gets passed into
it: ReturnLogger.

>>> from structlog import ReturnLogger
>>> ReturnLogger().msg(42) == 42

12 Chapter 4. User’s Guide

http://docs.python.org/2/library/collections.html#collections.OrderedDict
http://smarden.org/runit/
http://hynek.me/articles/taking-some-pain-out-of-python-logging/

structlog Documentation, Release

True
>>> obj = [’hi’]
>>> ReturnLogger().msg(obj) is obj
True

4.2.2 Configuration

To make logging as unintrusive and straight-forward to use as possible, structlog comes with a plethora of con-
figuration options and convenience functions. Let me start at the end and introduce you to the ultimate conve-
nience function that relies purely on configuration: structlog.get_logger() (and its Twisted-friendly alias
structlog.getLogger()).

The goal is to reduce your per-file logging boilerplate to:

from structlog.stdlib import get_logger
logger = get_logger()

while still giving you the full power via configuration.

To achieve that you’ll have to call structlog.configure() on app initialization (of course, only if you’re not
content with the defaults). The previous example could thus have been written as following:

>>> configure(processors=[proc], context_class=dict)
>>> log = wrap_logger(PrintLogger())
>>> log.msg(’hello world’)
I got called with {’event’: ’hello world’}
{’event’: ’hello world’}

In fact, it could even be written like

>>> configure(processors=[proc], context_class=dict)
>>> log = get_logger()
>>> log.msg(’hello world’)
I got called with {’event’: ’hello world’}
{’event’: ’hello world’}

because PrintLogger is the default LoggerFactory used (see Logger Factories).

structlog tries to behave in the least surprising way when it comes to handling defaults and configuration:

1. Passed processors, wrapper_class, and context_class arguments to structlog.wrap_logger() always
take the highest precedence. That means that you can overwrite whatever you’ve configured for each logger
respectively.

2. If you leave them on None, structlog will check whether you’ve configured default values using
structlog.configure() and uses them if so.

3. If you haven’t configured or passed anything at all, the default fallback values are used which means OrderedDict
for context and [format_exc_info(), KeyValueRenderer] for the processor chain.

If necessary, you can always reset your global configuration back to default values using
structlog.reset_defaults(). That can be handy in tests.

Note: Since you will call structlog.wrap_logger() (or one of the get_logger() functions) most likely
at import time and thus before you had a chance to configure structlog, they return a proxy that returns a correct
wrapped logger on first bind()/new().

Therefore, you must not call new() or bind() in module scope! Use get_logger()‘s initial_values to
achieve pre-populated contexts.

4.2. Loggers 13

http://docs.python.org/2/library/collections.html#collections.OrderedDict

structlog Documentation, Release

To enable you to log with the module-global logger, it will create a temporary BoundLogger and relay the log calls to
it on each call. Therefore if you have nothing to bind but intend to do lots of log calls in a function, it makes sense
performance-wise to create a local logger by calling bind() or new() without any parameters.

Logger Factories

To make structlog.get_logger() work, one needs one more option that hasn’t been discussed yet:
logger_factory.

It is a callable that returns the logger that gets wrapped and returned. In the simplest case, it’s a function that returns a
logger – or just a class. But you can also pass in an instance of a class with a __call__ method for more complicated
setups.

For the common cases of standard library logging and Twisted logging, structlog comes with two factories built right
in:

• structlog.stdlib.LoggerFactory

• structlog.twisted.LoggerFactory

So all it takes to use structlog with standard library logging is this:

>>> from structlog import get_logger, configure
>>> from structlog.stdlib import LoggerFactory
>>> configure(logger_factory=LoggerFactory())
>>> log = get_logger()
>>> log.critical(’this is too easy!’)
event=’this is too easy!’

The Twisted example shows how easy it is for Twisted.

Note: LoggerFactory()-style factories always need to get passed as instances like in the examples above. While
neither allows for customization using parameters yet, they may do so in the future.

Calling structlog.get_logger() without configuration gives you a perfectly useful
structlog.PrintLogger with the default values exaplained above. I don’t believe silent loggers are a
sensible default.

Where to Configure

The best place to perform your configuration varies with applications and frameworks. Ideally as late as possible but
before non-framework (i.e. your) code is executed. If you use standard library’s logging, it makes sense to configure
them next to each other.

Django Django has to date unfortunately no concept of an application assembler or “app is done” hooks. Therefore
the bottom of your settings.py will have to do.

Flask See Logging Application Errors.

Pyramid Application constructor.

Twisted The plugin definition is the best place. If your app is not a plugin, put it into your tac file (and then learn
about plugins).

If you have no choice but have to configure on import time in module-global scope, or can’t rule out
for other reasons that that your structlog.configure() gets called more than once, structlog offers

14 Chapter 4. User’s Guide

http://flask.pocoo.org/docs/errorhandling/
http://docs.pylonsproject.org/projects/pyramid/en/latest/narr/startup.html#the-startup-process
http://twistedmatrix.com/documents/current/core/howto/plugin.html
http://twistedmatrix.com/documents/current/core/howto/application.html
https://bitbucket.org/jerub/twisted-plugin-example

structlog Documentation, Release

structlog.configure_once() that raises a warning if structlog has been configured before (no matter whether
using structlog.configure() or configure_once()) but doesn’t change anything.

4.2.3 Immutability

You should call some functions with some arguments.

—David Reid

The behavior of copying itself, adding new values, and returning the result is useful for applications that keep somehow
their own context using classes or closures. Twisted is a fine example for that. Another possible approach is passing
wrapped loggers around or log only within your view where you gather errors and events using return codes and
exceptions. If you are willing to do that, you should stick to it because immutable state is a very good thing1. Sooner
or later, global state and mutable data lead to unpleasant surprises.

However, in the case of conventional web development, I realize that passing loggers around seems rather cumbersome,
intrusive, and generally against the mainstream culture. And since it’s more important that people actually use structlog
than to be pure and snobby, structlog contains a dirty but convenient trick: thread local context storage which you may
already know from Flask.

4.2.4 Thread Local Context

Thread local storage makes your logger’s context global but only within the current thread2. In the case of web
frameworks this usually means that your context becomes global to the current request.

The following explanations may sound a bit confusing at first but the Flask example illustrates how simple and elegant
this works in practice.

Wrapped Dicts

In order to make your context thread local, structlog ships with a function that can wrap any dict-like class to make it
usable for thread local storage: structlog.threadlocal.wrap_dict().

Within one thread, every instance of the returned class will have a common instance of the wrapped dict-like class:

>>> from structlog.threadlocal import wrap_dict
>>> WrappedDictClass = wrap_dict(dict)
>>> d1 = WrappedDictClass({’a’: 1})
>>> d2 = WrappedDictClass({’b’: 2})
>>> d3 = WrappedDictClass()
>>> d3[’c’] = 3
>>> d1 is d3
False
>>> d1 == d2 == d3 == WrappedDictClass()
True
>>> d3
<WrappedDict-...({’a’: 1, ’c’: 3, ’b’: 2})>

Then use an instance of the generated class as the context class:

configure(context_class=WrappedDictClass())

1 In the spirit of Python’s ‘consenting adults’, structlog doesn’t enforce the immutability with technical means. However, if you don’t meddle
with undocumented data, the objects can be safely considered immutable.

2 Special care has been taken to detect and support greenlets properly.

4.2. Loggers 15

http://en.wikipedia.org/wiki/Immutable_object
http://flask.pocoo.org/docs/design/#thread-locals

structlog Documentation, Release

Note: Remember: the instance of the class doesn’t matter. Only the class type matters because all instances of one
class share the same data.

structlog.threadlocal.wrap_dict() returns always a completely new wrapped class:

>>> AnotherWrappedDictClass = wrap_dict(dict)
>>> WrappedDictClass() != AnotherWrappedDictClass()
True
>>> WrappedDictClass.__name__
WrappedDict-41e8382d-bee5-430e-ad7d-133c844695cc
>>> AnotherWrappedDictClass.__name__
WrappedDict-e0fc330e-e5eb-42ee-bcec-ffd7bd09ad09

In order to be able to bind values temporarily to a logger, structlog.threadlocal comes with a context man-
ager: tmp_bind():

>>> log.bind(x=42)
<BoundLogger(context=<WrappedDict-...({’x’: 42})>, ...)>
>>> log.msg(’event!’)
x=42 event=’event!’
>>> with tmp_bind(log, x=23, y=’foo’) as tmp_log:
... tmp_log.msg(’another event!’)
y=’foo’ x=23 event=’another event!’
>>> log.msg(’one last event!’)
x=42 event=’one last event!’

The state before the with statement is saved and restored once it’s left.

If you want to detach a logger from thread local data, there’s structlog.threadlocal.as_immutable().

Downsides & Caveats

The convenience of having a thread local context comes at a price though:

Warning:
• If you can’t rule out that your application re-uses threads, you must remember to initialize your thread

local context at the start of each request using new() (instead of bind()). Otherwise you may start a new
request with the context still filled with data from the request before.

• Don’t stop assigning the results of your bind()s and new()s!
Do:

log = log.new(y=23)
log = log.bind(x=42)

Don’t:

log.new(y=23)
log.bind(x=42)

Although the state is saved in a global data structure, you still need the global wrapped logger produce a
real bound logger. Otherwise each log call will result in an instantiation of a temporary BoundLogger. See
Configuration for more details.

The general sentiment against thread locals is that they’re hard to test. In this case I feel like this is an acceptable
trade-off. You can easily write deterministic tests using a call-capturing processor if you use the API properly (cf.
warning above).

16 Chapter 4. User’s Guide

http://docs.python.org/2/library/stdtypes.html#context-manager-types
http://docs.python.org/2/library/stdtypes.html#context-manager-types

structlog Documentation, Release

This big red box is also what separates immutable local from mutable global data.

4.3 Processors

The true power of structlog lies in its combinable log processors. A log processor is a regular callable, i.e. a
function or an instance of a class with a __call__() method.

4.3.1 Chains

The processor chain is a list of processors. Each processors receives three positional arguments:

logger Your wrapped logger object. For example logging.Logger.

method_name The name of the wrapped method. If you called log.warn(’foo’), it will be "warn".

event_dict Current context together with the current event. If the context was {’a’: 42} and the event is "foo",
the initial event_dict will be {’a’:42, ’event’: ’foo’}.

The return value of each processor is passed on to the next one as event_dict until finally the return value of the
last processor gets passed into the wrapped logging method.

Examples

If you set up your logger like:

from structlog import BoundLogger, PrintLogger
wrapped_logger = PrintLogger()
logger = BoundLogger.wrap(wrapped_logger, processors=[f1, f2, f3, f4])
log = logger.new(x=42)

and call log.msg(’some_event’, y=23), it results in the following call chain:

wrapped_logger.msg(
f4(wrapped_logger, ’msg’,

f3(wrapped_logger, ’msg’,
f2(wrapped_logger, ’msg’,

f1(wrapped_logger, ’msg’, {’event’: ’some_event’, ’x’: 42, ’y’: 23})
)

)
)

)

In this case, f4 has to make sure it returns something wrapped_logger.msg can handle (see Adapting and Ren-
dering).

The simplest modification a processor can make is adding new values to the event_dict. Parsing human-readable
timestamps is tedious, not so UNIX timestamps – let’s add one to each log entry!

import calendar
import time

def timestamper(logger, log_method, event_dict):
event_dict[’timestamp’] = calendar.timegm(time.gmtime())
return event_dict

Easy, isn’t it? Please note, that structlog comes with such an processor built in: TimeStamper.

4.3. Processors 17

http://docs.python.org/2/library/logging.html#logging.Logger
http://en.wikipedia.org/wiki/UNIX_time

structlog Documentation, Release

4.3.2 Filtering

If a processor raises structlog.DropEvent, the event is silently dropped.

Therefore, the following processor drops every entry:

from structlog import DropEvent

def dropper(logger, method_name, event_dict):
raise DropEvent

But we can do better than that! How about dropping only log entries that are marked as coming from a certain peer
(e.g. monitoring)?

from structlog import DropEvent

class ConditionalDropper(object):
def __init__(self, peer_to_ignore):

self._peer_to_ignore = peer_to_ignore

def __call__(self, logger, method_name, event_dict):
"""
>>> cd = ConditionalDropper(’127.0.0.1’)
>>> cd(None, None, {’event’: ’foo’, ’peer’: ’10.0.0.1’})
{’peer’: ’10.0.0.1’, ’event’: ’foo’}
>>> cd(None, None, {’event’: ’foo’, ’peer’: ’127.0.0.1’})
Traceback (most recent call last):
...
DropEvent
"""
if event_dict.get(’peer’) == self._peer_to_ignore:

raise DropEvent
else:

return event_dict

4.3.3 Adapting and Rendering

An important role is played by the last processor because its duty is to adapt the event_dict into something the
underlying logging method understands. With that, it’s also the only processor that needs to know anything about the
underlying system.

For that, it can either return a string that is passed as the first (and only) positional argument to the underlying logger
or a tuple of (args, kwargs) that are passed as log_method(*args, **kwargs). Therefore return
’hello world’ is a shortcut for return ((’hello world’,), {}) (the example in Chains assumes this
shortcut has been taken).

This should give you enough power to use structlog with any logging system while writing agnostic processors that
operate on dictionaries.

Examples

The probably most useful formatter for string based loggers is JSONRenderer. Advanced log aggregation and
analysis tools like logstash offer features like telling them “this is JSON, deal with it” instead of fiddling with regular
expressions.

18 Chapter 4. User’s Guide

http://logstash.net

structlog Documentation, Release

More examples can be found in the examples chapter. For a list of shipped processors, check out the API documenta-
tion.

4.4 Examples

This chapter is intended to give you a taste of realistic usage of structlog.

4.4.1 Flask and Thread Local Data

In the simplest case, you bind a unique request ID to every incoming request so you can easily see which log entries
belong to which request.

import uuid

import flask
import structlog

from .some_module import some_function

logger = structlog.get_logger()
app = flask.Flask(__name__)

@app.route(’/login’, methods=[’POST’, ’GET’])
def some_route():

log = logger.new(
request_id=str(uuid.uuid4()),

)
do something
...
log.info(’user logged in’, user=’test-user’)
gives you:
request_id=’ffcdc44f-b952-4b5f-95e6-0f1f3a9ee5fd’ event=’user logged in’ user=’test-user’
...
some_function()
...

if __name__ == "__main__":
from structlog.stdlib import LoggerFactory
from structlog.threadlocal import wrap_dict
structlog.configure(

context_class=wrap_dict(dict),
logger_factory=LoggerFactory(),

)
app.run()

some_module.py

from structlog import get_logger

logger = get_logger()

def some_function():

4.4. Examples 19

structlog Documentation, Release

later then:
logger.error(’user did something’, something=’shot_in_foot’)
gives you:
request_id=’ffcdc44f-b952-4b5f-95e6-0f1f3a9ee5fd’ something=’shot_in_foot’ event=’user did something’

While wrapped loggers are immutable by default, this example demonstrates how to circumvent that using a thread
local dict implementation for context data for convenience (hence the requirement for using new() for re-initializing
the logger).

Please note that structlog.stdlib.LoggerFactory is a totally magic-free class that just deduces the name
of the caller’s module and does a logging.getLogger(). with it. It’s used by structlog.get_logger() to rid
you of logging boilerplate in application code.

4.4.2 Twisted, and Logging Out Objects

If you prefer to log less but with more context in each entry, you can bind everything important to your logger and log
it out with each log entry.

import sys
import uuid

import structlog
import twisted

from twisted.internet import protocol, reactor

logger = structlog.get_logger()

class Counter(object):
i = 0

def inc(self):
self.i += 1

def __repr__(self):
return str(self.i)

class Echo(protocol.Protocol):
def connectionMade(self):

self._counter = Counter()
self._log = logger.new(

connection_id=str(uuid.uuid4()),
peer=self.transport.getPeer().host,
count=self._counter,

)

def dataReceived(self, data):
self._counter.inc()
log = self._log.bind(data=data)
self.transport.write(data)
log.msg(’echoed data!’)

if __name__ == "__main__":
from structlog.twisted import LoggerFactory, EventAdapter
structlog.configure(

20 Chapter 4. User’s Guide

http://docs.python.org/2/library/logging.html#logging.getLogger

structlog Documentation, Release

processors=[EventAdapter()],
logger_factory=LoggerFactory(),

)
twisted.python.log.startLogging(sys.stderr)
reactor.listenTCP(1234, protocol.Factory.forProtocol(Echo))
reactor.run()

gives you something like:

... peer=’127.0.0.1’ connection_id=’1c6c0cb5-...’ count=1 data=’123\n’ event=’echoed data!’

... peer=’127.0.0.1’ connection_id=’1c6c0cb5-...’ count=2 data=’456\n’ event=’echoed data!’

... peer=’127.0.0.1’ connection_id=’1c6c0cb5-...’ count=3 data=’foo\n’ event=’echoed data!’

... peer=’10.10.0.1’ connection_id=’85234511-...’ count=1 data=’cba\n’ event=’echoed data!’

... peer=’127.0.0.1’ connection_id=’1c6c0cb5-...’ count=4 data=’bar\n’ event=’echoed data!’

Since Twisted’s logging system is a bit peculiar, structlog ships with an adapter so it keeps behaving like you’d
expect it to behave.

I’d also like to point out the Counter class that doesn’t do anything spectacular but gets bound once per connection to
the logger and since its repr is the number itself, it’s logged out correctly for each event. This shows off the strength
of keeping a dict of objects for context instead of passing around serialized strings.

4.4.3 Processors

Processors are a both simple and powerful feature of structlog.

So you want timestamps as part of the structure of the log entry, censor passwords, filter out log entries below your
log level before they even get rendered, and get your output as JSON for convenient parsing? Here you go:

>>> import datetime, logging, sys
>>> from structlog import wrap_logger
>>> from structlog.processors import JSONRenderer
>>> from structlog.stdlib import filter_by_level
>>> logging.basicConfig(stream=sys.stdout, format=’%(message)s’)
>>> def add_timestamp(_, __, event_dict):
... event_dict[’timestamp’] = datetime.datetime.utcnow()
... return event_dict
>>> def censor_password(_, __, event_dict):
... pw = event_dict.get(’password’)
... if pw:
... event_dict[’password’] = ’*CENSORED*’
... return event_dict
>>> log = wrap_logger(
... logging.getLogger(__name__),
... processors=[
... filter_by_level,
... add_timestamp,
... censor_password,
... JSONRenderer(indent=1, sort_keys=True)
...]
...)
>>> log.info(’something.filtered’)
>>> log.warning(’something.not_filtered’, password=’secret’)
{
"event": "something.not_filtered",
"password": "*CENSORED*",
"timestamp": "datetime.datetime(..., ..., ..., ..., ...)"

}

4.4. Examples 21

structlog Documentation, Release

structlog comes with many handy processors build right in – for a list of shipped processors, check out the API
documentation.

4.4.4 Custom Wrapper Classes

A custom wrapper class helps you to cast the shackles of your underlying logging system even further and get rid of
even more boilerplate.

>>> from structlog import BoundLogger, PrintLogger, wrap_logger
>>> class SemanticLogger(BoundLogger):
... def msg(self, event, **kw):
... if not ’status’ in kw:
... self.info(event, status=’ok’, **kw)
... else:
... self.info(event, **kw)
...
... def user_error(self, event, **kw):
... self.msg(event, status=’user_error’, **kw)
>>> log = wrap_logger(PrintLogger(), wrapper_class=SemanticLogger)
>>> log = log.bind(user=’fprefect’)
>>> log.user_error(’user.forgot_towel’)
user=’fprefect’ status=’user_error’ event=’user.forgot_towel’

I like to have semantically meaningful logger names. If you agree, this is a nice way to achieve that.

Of course, you can configure default processors, the wrapper class and the context classes globally.

22 Chapter 4. User’s Guide

CHAPTER

FIVE

API

5.1 structlog Package

5.1.1 structlog Package

structlog.get_logger(**initial_values)
Convenience function that returns a logger according to configuration.

>>> from structlog import get_logger
>>> log = get_logger(y=23)
>>> log.msg(’hello’, x=42)
y=23 x=42 event=’hello’

Parameters initial_values – Values that are used to pre-populate your contexts.

See Configuration for details.

If you prefer CamelCase, there’s an alias for your reading pleasure: structlog.getLogger().

structlog.getLogger(**initial_values)
CamelCase alias for structlog.get_logger().

This function is supposed to be in every source file – I don’t want it to stick out like a sore thumb in frameworks
like Twisted or Zope.

structlog.wrap_logger(logger, processors=None, wrapper_class=None, context_class=None, **ini-
tial_values)

Create a new bound logger for an arbitrary logger.

Default values for processors, wrapper_class, and context_class can be set using configure().

If you set processors or context_class here, calls to configure() have no effect for the respective attribute.

In other words: selective overwriting of the defaults is possible.

Parameters

• logger – An instance of a logger whose method calls will be wrapped. Use configured
logger factory if None.

• processors (list of callables) – List of processors.

• wrapper_class (type) – Class to use for wrapping loggers instead of
structlog.BoundLogger.

• context_class (type) – Class to be used for internal dictionary.

23

structlog Documentation, Release

Return type A proxy that creates a correctly configured bound logger when necessary.

structlog.configure(processors=None, wrapper_class=None, context_class=None, log-
ger_factory=None)

Configures the global defaults.

They are used if wrap_logger() has been called without arguments.

Also sets the global class attribute is_configured to True on first call. Can be called several times, keeping
an argument at None leaves is unchanged from the current setting.

Use reset_defaults() to undo your changes.

Parameters

• processors (list) – List of processors.

• wrapper_class (type) – Class to use for wrapping loggers instead of
structlog.BoundLogger.

• context_class – Class to be used for internal dictionary.

structlog.configure_once(*args, **kw)
Configures iff structlog isn’t configured yet.

It does not matter whether is was configured using configure() or configure_once() before.

Raises a RuntimeWarning if repeated configuration is attempted.

structlog.reset_defaults()
Resets global default values to builtins.

That means [format_exc_info(), KeyValueRenderer] for processors, BoundLogger for wrap-
per_class, OrderedDict for context_class, and PrintLogger for logger_factory.

Also sets the global class attribute is_configured to True.

class structlog.BoundLogger(logger, processors, context)
Immutable, context-carrying wrapper.

Public only for sub-classing, not intended to be instantiated by yourself. See wrap_logger() and
get_logger().

new(**new_values)
Clear context and binds initial_values using bind().

Only necessary with dict implementations that keep global state like those wrapped by
structlog.threadlocal.wrap_dict() when threads are re-used.

Return type BoundLogger

bind(**new_values)
Return a new logger with new_values added to the existing ones.

Return type BoundLogger

unbind(*keys)
Return a new logger with keys removed from the context.

Raises KeyError If the key is not part of the context.

Return type BoundLogger

class structlog.PrintLogger(file=None)
Prints events into a file.

Parameters file (file) – File to print to. (default: stdout)

24 Chapter 5. API

structlog Documentation, Release

>>> from structlog import PrintLogger
>>> PrintLogger().msg(’hello’)
hello

Useful if you just capture your stdout with tools like runit or if you forward your stderr to syslog.

Also very useful for testing and examples since logging is sometimes finicky in doctests.

class structlog.ReturnLogger
Returns the string that it’s called with.

>>> from structlog import ReturnLogger
>>> ReturnLogger().msg(’hello’)
’hello’

Useful for unit tests.

exception structlog.DropEvent
If raised by an processor, the event gets silently dropped.

Derives from BaseException because it’s technically not an error.

5.1.2 threadlocal Module

Primitives to keep context global but thread (and greenlet) local.

structlog.threadlocal.wrap_dict(dict_class)
Wrap a dict-like class and return the resulting class.

The wrapped class and used to keep global in the current thread.

Parameters dict_class (type) – Class used for keeping context.

Return type type

structlog.threadlocal.tmp_bind(logger, **tmp_values)
Bind tmp_values to logger & memorize current state. Rewind afterwards.

>>> from structlog import wrap_logger, PrintLogger
>>> from structlog.threadlocal import tmp_bind, wrap_dict
>>> logger = wrap_logger(PrintLogger(), context_class=wrap_dict(dict))
>>> with tmp_bind(logger, x=5) as tmp_logger:
... logger = logger.bind(y=3)
... tmp_logger.msg(’event’)
y=3 x=5 event=’event’
>>> logger.msg(’event’)
event=’event’

structlog.threadlocal.as_immutable(logger)
Extract the context from a thread local logger into an immutable logger.

Parameters logger (BoundLogger) – A logger with possibly thread local state.

Return type BoundLogger with an immutable context.

5.1.3 processors Module

Processors useful regardless of the logging framework.

5.1. structlog Package 25

http://smarden.org/runit/
http://hynek.me/articles/taking-some-pain-out-of-python-logging/

structlog Documentation, Release

class structlog.processors.JSONRenderer(**dumps_kw)
Bases: object

Render the event_dict using json.dumps(event_dict, **json_kw).

>>> from structlog.processors import JSONRenderer
>>> JSONRenderer(sort_keys=True)(None, None, {’a’: 42, ’b’: [1, 2, 3]})
’{"a": 42, "b": [1, 2, 3]}’

class structlog.processors.KeyValueRenderer(sort_keys=False)
Bases: object

Render event_dict as a list of Key=repr(Value) pairs.

>>> from structlog.processors import KeyValueRenderer
>>> KeyValueRenderer()(None, None, {’a’: 42, ’b’: [1, 2, 3]})
’a=42 b=[1, 2, 3]’

Parameters sort_keys (bool) – Whether to sort keys when formatting.

class structlog.processors.TimeStamper(fmt=None, utc=True)
Bases: object

Add a timestamp to event_dict.

Parameters

• format (str) – strftime format string, or "iso" for ISO 8601, or None for a UNIX times-
tamp.

• utc (bool) – Whether timestamp should be in UTC or local time.

>>> from structlog.processors import TimeStamper
>>> TimeStamper()(None, None, {})
{’timestamp’: 1378994017}
>>> TimeStamper(fmt=’iso’)(None, None, {})
{’timestamp’: ’2013-09-12T13:54:26.996778Z’}
>>> TimeStamper(fmt=’%Y’)(None, None, {})
{’timestamp’: ’2013’}

class structlog.processors.UnicodeEncoder(encoding=’utf-8’, errors=’backslashreplace’)
Bases: object

Encode unicode values in event_dict.

Useful for KeyValueRenderer if you don’t want to see u-prefixes:

>>> from structlog.processors import KeyValueRenderer, UnicodeEncoder
>>> KeyValueRenderer()(None, None, {’foo’: u’bar’})
"foo=u’bar’"
>>> KeyValueRenderer()(None, None,
... UnicodeEncoder()(None, None, {’foo’: u’bar’}))
"foo=’bar’"

Just put it in the processor chain before KeyValueRenderer.

structlog.processors.format_exc_info(logger, name, event_dict)
Replace an exc_info field by an exception string field:

If event_dict contains the key exc_info, there are two possible behaviors:

•If the value is a tuple, render it into the key exception.

26 Chapter 5. API

http://en.wikipedia.org/wiki/ISO_8601
http://en.wikipedia.org/wiki/Unix_time
http://en.wikipedia.org/wiki/Unix_time

structlog Documentation, Release

•If the value true but no tuple, obtain exc_info ourselves and render that.

If there is no exc_info key, the event_dict is not touched. This behavior is analogue to the one of the stdlib’s
logging.

>>> from structlog.processors import format_exc_info
>>> try:
... raise ValueError
... except ValueError:
... format_exc_info(None, None, {’exc_info’: True})
{’exception’: ’Traceback (most recent call last):...

5.1.4 stdlib Module

Processors and helpers specific to the logging module from the Python standard library.

class structlog.stdlib.LoggerFactory
Build a standard library logger when an instance is called.

>>> from structlog import configure
>>> from structlog.stdlib import LoggerFactory
>>> configure(logger_factory=LoggerFactory())

__call__()
Deduces the caller’s module name and create a stdlib logger.

Return type logging.Logger

structlog.stdlib.filter_by_level(logger, name, event_dict)
Check whether logging is configured to accept messages from this log level.

Should be the first processor if stdlib’s filtering by level is used so possibly expensive processors like exception
formatters are avoided in the first place.

>>> import logging
>>> from structlog.stdlib import filter_by_level
>>> logging.basicConfig(level=logging.WARN)
>>> logger = logging.getLogger()
>>> filter_by_level(logger, ’warn’, {})
{}
>>> filter_by_level(logger, ’debug’, {})
Traceback (most recent call last):
...
DropEvent

5.1.5 twisted Module

Processors and tools specific to the Twisted networking engine.

class structlog.twisted.LoggerFactory
Build a Twisted logger when an instance is called.

>>> from structlog import configure
>>> from structlog.twisted import LoggerFactory
>>> configure(logger_factory=LoggerFactory())

class structlog.twisted.EventAdapter(dictFormatter=None)
Adapt an event_dict to Twisted logging system.

5.1. structlog Package 27

http://docs.python.org/2/library/logging.html
http://docs.python.org/
http://twistedmatrix.com/

structlog Documentation, Release

Particularly, make a wrapped twisted.python.log.err behave as expected.

Must be the last processor in the chain and requires a dictFormatter for the actual formatting as an constructor
argument in order to be able to fully support the original behaviors of log.msg() and log.err().

class structlog.twisted.JSONRenderer(**dumps_kw)
Behaves like structlog.processors.JSONRenderer except that it formats tracebacks and failures
itself if called with err().

Not an adapter like EventAdapter but a real formatter. Nor does it require to be adapted using it.

28 Chapter 5. API

http://twistedmatrix.com/documents/current/api/twisted.python.log.html#err

CHAPTER

SIX

ADDITIONAL NOTES

6.1 License and Hall of Fame

structlog is licensed under the permissive Apache License, Version 2. The full license text can be also found in the
source code repository.

6.1.1 Authors

structlog is written and maintained by Hynek Schlawack. It’s inspired on previous work done by Jean-Paul Calderone
and David Reid.

The following folks helped forming structlog into what it is now:

• Alex Gaynor

• Christopher Armstrong

• Daniel Lindsley

• David Reid

• Donald Stufft

• Glyph

• Holger Krekel

• Jack Pearkes

• Jean-Paul Calderone

• Lynn Root

• Noah Kantrowitz

• Tarek Ziadé

• Thomas Heinrichsdobler

• Tom Lazar

Some of them disapprove of the addition of thread local context data. :)

29

http://choosealicense.com/licenses/apache/
https://github.com/hynek/structlog/blob/master/LICENSE
http://hynek.me/
http://as.ynchrono.us
http://dreid.org
https://github.com/alex
https://github.com/radeex
https://github.com/toastdriven
http://dreid.org
https://github.com/dstufft
https://github.com/glyph
https://github.com/hpk42
https://github.com/pearkes
http://as.ynchrono.us
https://github.com/econchick
https://github.com/coderanger
https://github.com/tarekziade
https://github.com/dertyp
https://github.com/tomster

structlog Documentation, Release

Third Party Code

The compatibility code that makes this software run on both Python 2 and 3 is heavily inspired and partly copy and
pasted from the MIT-licensed six by Benjamin Peterson. The only reason why it’s not used as a dependency is to avoid
any runtime dependency in the first place.

6.2 History

6.2.1 0.1.0 (2013-09-12)

• Initial release.

30 Chapter 6. Additional Notes

http://choosealicense.com/licenses/mit/
https://bitbucket.org/gutworth/six/

CHAPTER

SEVEN

INDICES AND TABLES

• genindex

• modindex

• search

31

structlog Documentation, Release

32 Chapter 7. Indices and tables

PYTHON MODULE INDEX

s
structlog, ??
structlog.processors, ??
structlog.stdlib, ??
structlog.threadlocal, ??
structlog.twisted, ??

33

