
structlog Documentation
Release 22.2.0

Author

Nov 19, 2022

CONTENTS

1 Sponsors 3

2 Why . . . 5
2.1 . . . Structured Logging? . 5
2.2 . . . structlog? . 5

3 Basics 9
3.1 Getting Started . 9
3.2 Bound Loggers . 13
3.3 Configuration . 17
3.4 Processors . 19
3.5 Context Variables . 21

4 Development Affordances 25
4.1 Console Output . 25
4.2 Testing . 27
4.3 Type Hints . 28

5 Integration with Existing Systems 29
5.1 Frameworks . 29
5.2 Standard Library Logging . 31
5.3 Twisted . 40

6 structlog in Practice 43
6.1 Recipes . 43
6.2 Logging Best Practices . 46
6.3 Performance . 48

7 Deprecated Features 51
7.1 Legacy Thread-local Context . 51

8 API Reference 57
8.1 API Reference . 57

9 Project Information 91
9.1 structlog for Enterprise . 91
9.2 License and Hall of Fame . 91
9.3 Changelog . 92

10 Indices and tables 107

i

Python Module Index 109

Index 111

ii

structlog Documentation, Release 22.2.0

Simple. Powerful. Fast. Pick three.

Release 22.2.0 (What’s new?)

structlog is the production-ready logging solution for Python:

• Simple: At its core, everything is about functions that take and return dictionaries – all hidden behind familiar
APIs.

• Powerful: Functions and dictionaries aren’t just simple, they’re also powerful. structlog leaves you in control.

• Fast: structlog is not hamstrung by designs of yore. Its flexibility comes not at the price of performance.

Thanks to its flexible design, you choose whether you want structlog to take care of the output of your log entries or
whether you prefer to forward them to an existing logging system like the standard library’s logging module.

The output format is just as flexible and structlog comes with support for JSON, logfmt, as well as pretty console output
out-of-the-box:

CONTENTS 1

https://brandur.org/logfmt
https://github.com/hynek/structlog/blob/main/docs/_static/console_renderer.png?raw=true

structlog Documentation, Release 22.2.0

2 CONTENTS

CHAPTER

ONE

SPONSORS

structlog would not be possible without our amazing sponsors. Especially those generously supporting us at the The
Organization tier and higher:

structlog has been successfully used in production at every scale since 2013, while embracing cutting-edge technologies
like asyncio, context variables, or type hints as they emerged. Its paradigms proved influential enough to help design
structured logging packages across ecosystems.

If you’d like more information on why structured logging in general – and structlog in particular – are good ideas, we’ve
prepared a summary just for you.

Otherwise, let’s dive right in!

3

https://github.com/sponsors/hynek
https://twitter.com/sirupsen/status/638330548361019392
https://github.com/sirupsen/logrus

structlog Documentation, Release 22.2.0

4 Chapter 1. Sponsors

CHAPTER

TWO

WHY . . .

2.1 . . . Structured Logging?

I believe the widespread use of format strings in logging is based on two presumptions:

• The first level consumer of a log message is a human.

• The programmer knows what information is needed to debug an issue.

I believe these presumptions are no longer correct in server side software.

—Paul Querna

Structured logging means that you don’t write hard-to-parse and hard-to-keep-consistent prose in your log entries.
Instead, you log events that happen in a context of key-value pairs.

Tip: More general advice about production-grade logging can be found in the later chapter on Logging Best Practices.

2.2 . . . structlog?

2.2.1 Easier Logging

You can stop writing prose and start thinking in terms of an event that happens in the context of key-value pairs:

>>> from structlog import get_logger
>>> log = get_logger()
>>> log.info("key_value_logging", out_of_the_box=True, effort=0)
2020-11-18 09:17:09 [info] key_value_logging effort=0 out_of_the_box=True

Each log entry is a meaningful dictionary instead of an opaque string now!

That said, structlog is not taking anything away from you. You can still use string interpolation using positional argu-
ments:

>>> log.info("Hello, %s!", "world")
2022-10-10 07:19:25 [info] Hello, world!

5

https://paul.querna.org/articles/2011/12/26/log-for-machines-in-json/

structlog Documentation, Release 22.2.0

2.2.2 Data Binding

Since log entries are dictionaries, you can start binding and re-binding key-value pairs to your loggers to ensure they
are present in every following logging call:

>>> log = log.bind(user="anonymous", some_key=23)
>>> log = log.bind(user="hynek", another_key=42)
>>> log.info("user.logged_in", happy=True)
2020-11-18 09:18:28 [info] user.logged_in another_key=42 happy=True some_key=23␣
→˓user=hynek

You can also bind key-value pairs to context variables that look global, but are local to your thread or asyncio context
(i.e. usually your request).

2.2.3 Powerful Pipelines

Each log entry goes through a processor pipeline that is just a chain of functions that receive a dictionary and return a
new dictionary that gets fed into the next function. That allows for simple but powerful data manipulation:

def timestamper(logger, log_method, event_dict):
"""Add a timestamp to each log entry."""
event_dict["timestamp"] = time.time()
return event_dict

There are plenty of processors for most common tasks coming with structlog:

• Collectors of call stack information (“How did this log entry happen?”),

• . . . and exceptions (“What happened�”).

• Flexible timestamping.

2.2.4 Formatting

structlog is completely flexible about how the resulting log entry is emitted. Since each log entry is a dictionary, it can
be formatted to any format:

• A colorful key-value format for local development,

• JSON of logfmt for easy parsing,

• or some standard format you have parsers for like nginx or Apache httpd.

Internally, formatters are processors whose return value (usually a string) is passed into loggers that are responsible for
the output of your message. structlog comes with multiple useful formatters out-of-the-box.

6 Chapter 2. Why . . .

structlog Documentation, Release 22.2.0

2.2.5 Output

structlog is also flexible with the final output of your log entries:

• A built-in lightweight printer like in the examples above. Easy to use and fast.

• Use the standard library’s or Twisted’s logging modules for compatibility. In this case structlog works like a
wrapper that formats a string and passes them off into existing systems that won’t know that structlog even exists.

Or the other way round: structlog comes with a logging formatter that allows for processing third party log
records.

• Don’t format it to a string at all! structlog passes you a dictionary and you can do with it whatever you want.
Reported use cases are sending them out via network or saving them to a database.

2.2.6 Highly Testable

structlog is thoroughly tested and we see it as our duty to help you to achieve the same in your applications. That’s
why it ships with a test helpers to introspect your application’s logging behavior with little-to-no boilerplate.

2.2. . . . structlog? 7

structlog Documentation, Release 22.2.0

8 Chapter 2. Why . . .

CHAPTER

THREE

BASICS

The first chapters teach you all you need to use structlog productively. They build gently on each other, so ideally, read
them in order.

3.1 Getting Started

3.1.1 Installation

You can install structlog from PyPI using pip:

$ python -m pip install structlog

If you want pretty exceptions in development (you know you do!), additionally install either Rich or better-exceptions.
Try both to find out which one you like better – the screenshot in the README and docs homepage is rendered by
Rich.

On Windows, you also have to install Colorama if you want colorful output beside exceptions.

3.1.2 Your First Log Entry

A lot of effort went into making structlog accessible without reading pages of documentation. As a result, the simplest
possible usage looks like this:

>>> import structlog
>>> log = structlog.get_logger()
>>> log.info("hello, %s!", "world", key="value!", more_than_strings=[1, 2, 3])
2022-10-07 10:41:29 [info] hello, world! key=value! more_than_strings=[1, 2, 3]

Here, structlog takes advantage of its default settings:

• Output is sent to standard out instead doing nothing.

• It imitates standard library logging’s log level names for familiarity. By default, no level-based filtering is
done, but it comes with a very fast filtering machinery.

• Like in logging, positional arguments are interpolated into the message string using %. That might look
dated, but it’s much faster than using str.format and allows structlog to be used as drop-in replacement for
logging. If you know that the log entry is always gonna be logged out, just use f-strings which are the fastest.

• All keywords are formatted using structlog.dev.ConsoleRenderer. That in turn uses repr() to serialize
any value to a string.

• It’s rendered in nice colors.

9

https://pypi.org/project/structlog/
https://github.com/Textualize/rich
https://github.com/qix-/better-exceptions
https://pypi.org/project/colorama/
https://en.wikipedia.org/wiki/Standard_out#Standard_output_.28stdout.29
https://docs.python.org/3/library/logging.html#module-logging
https://docs.python.org/3/library/stdtypes.html#old-string-formatting
https://docs.python.org/3/library/stdtypes.html#str.format
https://docs.python.org/3/library/logging.html#module-logging
https://docs.python.org/3/tutorial/inputoutput.html#formatted-string-literals
https://docs.python.org/3/library/functions.html#repr

structlog Documentation, Release 22.2.0

• If you have Rich or better-exceptions installed, exceptions will be rendered in colors and with additional helpful
information.

Please note that even in most complex logging setups the example would still look just like that thanks to Configuration.
Using the defaults, as above, is equivalent to:

import logging
import structlog

structlog.configure(
processors=[

structlog.contextvars.merge_contextvars,
structlog.processors.add_log_level,
structlog.processors.StackInfoRenderer(),
structlog.dev.set_exc_info,
structlog.processors.TimeStamper(),
structlog.dev.ConsoleRenderer()

],
wrapper_class=structlog.make_filtering_bound_logger(logging.NOTSET),
context_class=dict,
logger_factory=structlog.PrintLoggerFactory(),
cache_logger_on_first_use=False

)
log = structlog.get_logger()

Note:

• structlog.stdlib.recreate_defaults() allows you to switch structlog to using standard library’s
logging module for output for better interoperability with just one function call.

• make_filtering_bound_logger() (re-)uses logging’s log levels, but doesn’t use logging at all. The ex-
posed API is FilteringBoundLogger.

• For brevity and to enable doctests, all further examples in structlog’s documentation use the more simplistic
KeyValueRenderer() without timestamps.

Here you go, structured logging!

However, this alone wouldn’t warrant its own package. After all, there’s even a recipe on structured logging for the
standard library. So let’s go a step further.

3.1.3 Building a Context

Imagine a hypothetical web application that wants to log out all relevant data with just the APIs that we’ve introduced
so far:

def view(request):
user_agent = request.get("HTTP_USER_AGENT", "UNKNOWN")
peer_ip = request.client_addr
if something:

log.info("something", user_agent=user_agent, peer_ip=peer_ip)
return "something"

elif something_else:
log.info("something_else", user_agent=user_agent, peer_ip=peer_ip)

(continues on next page)

10 Chapter 3. Basics

https://github.com/Textualize/rich
https://github.com/qix-/better-exceptions
https://docs.python.org/3/library/logging.html#module-logging
https://docs.python.org/3/howto/logging-cookbook.html#implementing-structured-logging

structlog Documentation, Release 22.2.0

(continued from previous page)

return "something_else"
else:

log.info("else", user_agent=user_agent, peer_ip=peer_ip)
return "else"

The calls themselves are nice and straight to the point, however you’re repeating yourself all over the place. It’s easy to
forget to add a key-value pair in one of the incantations.

At this point, you’ll be tempted to write a closure like:

def log_closure(event):
log.info(event, user_agent=user_agent, peer_ip=peer_ip)

inside of the view. Problem solved? Not quite. What if the parameters are introduced step by step? And do you really
want to have a logging closure in each of your views?

Let’s have a look at a better approach:

def view(request):
log = logger.bind(

user_agent=request.get("HTTP_USER_AGENT", "UNKNOWN"),
peer_ip=request.client_addr,

)

if foo := request.get("foo"):
log = log.bind(foo=foo)

if something:
log.info("something")
return "something"

elif something_else:
log.info("something_else")
return "something_else"

else:
log.info("else")
return "else"

Suddenly your logger becomes your closure!

To structlog, a log entry is just a dictionary called event dict[ionary]:

• You can pre-build a part of the dictionary step by step. These pre-saved values are called the context.

• As soon as an event happens – which are the kwargs of the log call – it is merged together with the context to
an event dict and logged out.

• Each logger with its context is immutable. You manipulate the context by creating new loggers using bind()
and unbind().

The last point is very clean and easy to reason about, but sometimes it’s useful to store some data globally.

In our example above the peer IP comes to mind. There’s no point in extracting it in every view! For that, structlog
gives you thread-local context storage based on the contextvars module:

3.1. Getting Started 11

https://docs.python.org/3/library/contextvars.html#module-contextvars

structlog Documentation, Release 22.2.0

>>> structlog.contextvars.bind_contextvars(peer_ip="1.2.3.4")
>>> structlog.get_logger().info("something")
2022-10-10 10:18:05 [info] something peer_ip=1.2.3.4

See Context Variables for more information and a more complete example.

3.1.4 Manipulating Log Entries in Flight

Now that your log events are dictionaries, it’s also much easier to manipulate them than if they were plain strings.

To facilitate that, structlog has the concept of processor chains. A processor is a function that receives the event
dictionary along with two other arguments and returns a new event dictionary that may or may not differ from the one
it got passed. The next processor in the chain receives that returned dictionary instead of the original one.

Let’s assume you wanted to add a timestamp to every event dict. The processor would look like this:

>>> import datetime
>>> def timestamper(_, __, event_dict):
... event_dict["time"] = datetime.datetime.now().isoformat()
... return event_dict

Plain Python, plain dictionaries. Now you have to tell structlog about your processor by configuring it:

>>> structlog.configure(processors=[timestamper, structlog.processors.
→˓KeyValueRenderer()])
>>> structlog.get_logger().info("hi")
event='hi' time='2018-01-21T09:37:36.976816'

3.1.5 Rendering

Finally you want to have control over the actual format of your log entries.

As you may have noticed in the previous section, renderers are just processors too. The type of the return value that is
required from the renderer depends on the input that the logger that is wrapped by structlog needs. While usually it’s
a string or bytes, there’s no rule saying it has to be a string!

So assuming you want to follow best practices and render your event dictionary to JSON that is picked up by a log
aggregation system like ELK or Graylog, structlog comes with batteries included – you just have to tell it to use its
JSONRenderer:

>>> structlog.configure(processors=[structlog.processors.JSONRenderer()])
>>> structlog.get_logger().info("hi")
{"event": "hi"}

12 Chapter 3. Basics

structlog Documentation, Release 22.2.0

3.1.6 structlog and Standard Library’s logging

While structlog’s loggers are very fast and sufficient for the majority of our users, you’re not bound to them. Instead,
it’s been designed from day one to wrap your existing loggers and add structure and incremental context building to
them.

The most prominent example of such an “existing logger” is certainly the logging module in the standard library. To
make this common case as simple as possible, structlog comes with some tools to help you.

As noted before, the fastest way to transform structlog into a logging-friendly package is calling structlog.stdlib.
recreate_defaults().

3.1.7 asyncio

structlog comes with two approaches to support asynchronous logging.

The default bound logger that you get back from structlog.get_logger() doesn’t have just the familiar log methods
like debug() or info(), but also their async cousins, that simply prefix the name with an a:

>>> import asyncio
>>> logger = structlog.get_logger()
>>> async def f():
... await logger.ainfo("hi!")
...
>>> asyncio.run(f())
2022-10-18 13:23:37 [info] hi!

You can use the sync and async logging methods interchangeably within the same application.

The standard library integration on the other hand offers an asynchronous wrapper class structlog.stdlib.
AsyncBoundLogger.

3.1.8 Liked what you saw?

Now you’re all set for the rest of the user’s guide and can start reading about bound loggers – the heart of structlog.

3.2 Bound Loggers

The centerpiece of structlog that you will interact with most is called a bound logger.

It’s what you get back from structlog.get_logger() and it’s called a bound logger because you can bind key-value
pairs to it.

As far as structlog is concerned, it consists of three parts:

1. A context dictionary that you can bind key-value pairs to. This dictionary is merged into each log entry that is
logged from this logger specifically.

You can inspect a context of a bound logger by calling structlog.get_context() on it.

2. A list of processors that are called on every log entry. Each processor receives the return value of its predecessor
passed as an argument.

This list is usually set using Configuration.

3.2. Bound Loggers 13

structlog Documentation, Release 22.2.0

3. And finally a logger that it’s wrapping. This wrapped logger is responsible for the output of the log entry that has
been returned by the last processor. This can be standard library’s logging.Logger like in the image above,
but absolutely doesn’t have to: By default it’s structlog’s PrintLogger.

This wrapped logger also is usually set using Configuration.

Important: Bound loggers themselves do not do any I/O themselves.

All they do is manage the context and proxy log calls to a wrapped logger.

3.2.1 Context

To manipulate the context dictionary, a bound logger can:

• Recreate itself with (optional) additional context data: bind() and new().

• Recreate itself with less context data: unbind() and try_unbind().

In any case, the original bound logger or its context are never mutated. They always return a copy of the bound logger
with a new context that reflects your changes.

This part of the API is defined in the typing.Protocol called structlog.typing.BindableLogger. The protocol
is marked typing.runtime_checkable() which means that you can check an object for being a bound logger using
isinstance(obj, structlog.typing.BindableLogger).

3.2.2 Output

Finally, a bound logger also indirectly exposes the logging methods of the wrapped logger. By default, that’s a
FilteringBoundLogger that is wrapping a PrintLogger. They both share the set of log methods that’s present
in the standard library: debug(), info(), warning(), error(), and critical().

Whenever you call one of those methods on the bound logger, it will:

1. Make a copy of its context – now it becomes the event dictionary,

2. Add the keyword arguments of the method call to the event dict.

3. Add a new key event with the value of the first positional argument of the method call to the event dict.

4. Run the processors successively on the event dict. Each processor receives the result of its predecessor.

5. Finally, it takes the result of the final processor and calls the method with the same name – that got called on the
bound logger – on the wrapped logger.

For flexibility, the final processor can return either a string1 that is passed directly as a positional parameter, or a
tuple (args, kwargs) that are passed as wrapped_logger.log_method(*args, **kwargs).

1 str, bytes, or bytearray to be exact.

14 Chapter 3. Basics

https://docs.python.org/3/library/logging.html#logging.Logger
https://docs.python.org/3/library/typing.html#typing.Protocol
https://docs.python.org/3/library/typing.html#typing.runtime_checkable
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/stdtypes.html#bytearray

structlog Documentation, Release 22.2.0

Step-by-Step Example

Assuming you’ve left the default configuration and have:

import structlog

logger = structlog.get_logger()

log = logger.bind(foo="bar")

Now log is a bound logger of type FilteringBoundLogger (but in the default config there’s no filtering). log’s
context is {"foo": "bar"} and its wrapped logger is a structlog.PrintLogger.

Now if you call log.info("Hello, %s!", "world", number=42) the following happens:

1. "world" gets interpolated into "Hello, %s!", making the event “Hello, world!”.

2. The bound logger’s context gets copied and the key-value pairs from the info call are added to it. It becomes
an event dict and is {"foo": "bar", "number": 42} now.

3. The event from step 1 is added too. The event dict is {"foo": "bar", "number": 42, "event":
"Hello, world!"} now.

4. The event dict is fed into the processor chain. In this case the processors add a timestamp and the log level name
to the event dict.

Before it hits the last processor, the event dict looks something like {"foo": "bar", "number": 42,
"event": "Hello, world!", "level": "info", "timestamp": "2022-10-13 16:29:27"}
now.

The last processor is structlog.dev.ConsoleRenderer and renders the event dict into a colorful string2.

5. Finally, the wrapped logger’s (a PrintLogger) info() method is called with that string.

3.2.3 Filtering by Log Levels

Filtering based on log levels can be done in a processor very easily3, however that means unnecessary performance
overhead through function calls. We care a lot about performance and that’s why structlog’s default bound logger class
implements level-filtering as close to the users as possible: in the bound logger’s logging methods before even creating
an event dict and starting the processor chain.

structlog.make_filtering_bound_logger() allows you to create a bound logger whose log methods with a log
level beneath the configured one consist of a plain return None.

Here’s an example:

>>> import structlog
>>> logger = structlog.get_logger()
>>> logger.debug("hi!")
2022-10-15 11:39:03 [debug] hi!
>>> import logging
>>> structlog.configure(wrapper_class=structlog.make_filtering_bound_logger(logging.
→˓INFO))
>>> logger.debug("hi!")
no output!

2 Until this very step, the event dict was a dictionary. By replacing the last processor, you decide on the format of your logs. For example, if you
wanted JSON logs, you just have to replace the last processor with structlog.processors.JSONRenderer.

3 And it’s in fact supported for standard library logging with the structlog.stdlib.filter_by_level() processor.

3.2. Bound Loggers 15

structlog Documentation, Release 22.2.0

In this example, we first log out using the default logger that doesn’t filter at all. Then we change the configuration to
filtering at the info level and try again: no log output!

Let’s have a look at the debug method:

>>> import inspect
>>> print(inspect.getsource(logger.debug))
def _nop(self: Any, event: str, **kw: Any) -> Any:

return None

This is as effective as it gets and usually as flexible as the vast majority of users need.

Important: structlog uses the constants from logging, but does not share any code. Passing 20 instead of logging.
INFO would have worked too.

3.2.4 Wrapping Loggers Manually

In practice, you won’t be instantiating bound loggers yourself. You will configure structlog as explained in the next
chapter and then just call structlog.get_logger().

However, in some rare cases you may not want to do that. For example because you don’t control how you get the
logger that you would like to wrap (famous example: Celery). For that times there is the structlog.wrap_logger()
function that can be used to wrap a logger – optionally without any global state (i.e. configuration):

>>> import structlog
>>> class CustomPrintLogger:
... def msg(self, message):
... print(message)
>>> def proc(logger, method_name, event_dict):
... print("I got called with", event_dict)
... return repr(event_dict)
>>> log = structlog.wrap_logger(
... CustomPrintLogger(),
... wrapper_class=structlog.BoundLogger,
... processors=[proc],
...)
>>> log2 = log.bind(x=42)
>>> log == log2
False
>>> log.msg("hello world")
I got called with {'event': 'hello world'}
{'event': 'hello world'}
>>> log2.msg("hello world")
I got called with {'x': 42, 'event': 'hello world'}
{'x': 42, 'event': 'hello world'}
>>> log3 = log2.unbind("x")
>>> log == log3
True
>>> log3.msg("nothing bound anymore", foo="but you can structure the event too")
I got called with {'foo': 'but you can structure the event too', 'event': 'nothing bound␣
→˓anymore'}
{'foo': 'but you can structure the event too', 'event': 'nothing bound anymore'}

16 Chapter 3. Basics

https://docs.python.org/3/library/logging.html#module-logging

structlog Documentation, Release 22.2.0

3.3 Configuration

The focus of structlog has always been to be flexible to a fault. The goal is that a user can use it with any logger of
their own that is wrapped by structlog.

That’s the reason why there’s an overwhelming amount of knobs to tweak, but – ideally – once you find your configu-
ration, you don’t touch it ever again and, more importantly: don’t see any of it in your application code.

Let’s start at the end and introduce the ultimate convenience function that relies purely on configuration: structlog.
get_logger().

The goal is to reduce your per-file application logging boilerplate to:

import structlog

logger = structlog.get_logger()

To that end, you’ll have to call structlog.configure() on app initialization. You can call structlog.
configure() repeatedly and only set one or more settings – the rest will not be affected.

If necessary, you can always reset your global configuration back to default values using structlog.
reset_defaults(). That can be handy in tests.

At any time, you can check whether and how structlog is configured using structlog.is_configured() and
structlog.get_config()}:

>>> structlog.is_configured()
False
>>> structlog.configure(logger_factory=structlog.stdlib.LoggerFactory)
>>> structlog.is_configured()
True
>>> cfg = structlog.get_config()
>>> cfg["logger_factory"]
<class 'structlog.stdlib.LoggerFactory'>

Important: Since you’ll call structlog.get_logger() in module scope, it runs at import time before you had a
chance to configure structlog. Therefore it returns a lazy proxy that returns a correctly configured bound logger on its
first call to one of the context-managing methods like bind().

Thus, you must never call new() or bind() in module or class scope because , you will receive a logger configured
with structlog’s default values. Use get_logger()’s initial_values to achieve pre-populated contexts.

To enable you to log with the module-global logger, it will create a temporary bound logger on each call. Therefore
if you have nothing to bind but intend to do lots of log calls in a function, it makes sense performance-wise to create a
local logger by calling bind() or new() without any parameters. See also Performance.

3.3. Configuration 17

structlog Documentation, Release 22.2.0

3.3.1 What To Configure

You can find the details in the API documentation of structlog.configure(), but let’s introduce the most important
ones at a high level first.

Wrapper Classes

You’ve met Bound Loggers in the last chapter. They’re the objects returned by get_logger() and allow to bind
key-value pairs into their private context. You can configure their type using the wrapper_class keyword.

Whenever you bind or unbind data to a bound logger, this class is instantiated with the new context and returned.

Logger Factories

We’ve already talked about wrapped loggers responsible for the output, but until now we haven’t explained where they
come from until now. Unlike with bound loggers, you often need more flexibility when instantiating them. Therefore
you don’t configure a class; you configure a factory using the logger_factory keyword.

It’s a callable that returns the logger that gets wrapped and returned. In the simplest case, it’s a function that returns a
logger – or just a class. But you can also pass in an instance of a class with a __call__ method for more complicated
setups.

These will be passed to the logger factories. For example, if you use structlog.get_logger("a name") and con-
figure structlog to use the standard library LoggerFactory, which has support for positional parameters, the returned
logger will have the name "a name".

For the common cases of standard library logging and Twisted logging, structlog comes with two factories built right
in:

• structlog.stdlib.LoggerFactory

• structlog.twisted.LoggerFactory

So all it takes to use standard library logging for output is:

>>> from structlog import get_logger, configure
>>> from structlog.stdlib import LoggerFactory
>>> configure(logger_factory=LoggerFactory())
>>> log = get_logger()
>>> log.critical("this is too easy!")
event='this is too easy!'

By using structlog’s structlog.stdlib.LoggerFactory, it is also ensured that variables like function names and
line numbers are expanded correctly in your log format. See Standard Library Logging for more details.

Calling structlog.get_logger() without configuration gives you a perfectly useful structlog.PrintLogger.
We don’t believe silent loggers are a sensible default.

18 Chapter 3. Basics

https://docs.python.org/3/library/logging.html#module-logging

structlog Documentation, Release 22.2.0

Processors

You will meet Processors in the next chapter. They are configured using the processors keyword that takes an
Iterable of callables that act as processors.

3.4 Processors

The true power of structlog lies in its combinable log processors. A log processor is a regular callable, i.e. a function
or an instance of a class with a __call__() method.

3.4.1 Chains

The processor chain is a list of processors. Each processors receives three positional arguments:

logger
Your wrapped logger object. For example logging.Logger or structlog.typing.FilteringBoundLogger
(default).

method_name
The name of the wrapped method. If you called log.warning("foo"), it will be "warning".

event_dict
Current context together with the current event. If the context was {"a": 42} and the event is "foo", the
initial event_dict will be {"a":42, "event": "foo"}.

The return value of each processor is passed on to the next one as event_dict until finally the return value of the last
processor gets passed into the wrapped logging method.

Note: structlog only looks at the return value of the last processor. That means that as long as you control the next
processor in the chain (i.e. the processor that will get your return value passed as an argument), you can return whatever
you want.

Returning a modified event dictionary from your processors is just a convention to make processors composable.

Examples

If you set up your logger like:

structlog.configure(processors=[f1, f2, f3])
log = structlog.get_logger().bind(x=42)

and call log.info("some_event", y=23), it results in the following call chain:

wrapped_logger.info(
f3(wrapped_logger, "info",

f2(wrapped_logger, "info",
f1(wrapped_logger, "info", {"event": "some_event", "x": 42, "y": 23})

)
)

)

3.4. Processors 19

https://docs.python.org/3/library/collections.abc.html#collections.abc.Iterable
https://docs.python.org/3/library/logging.html#logging.Logger

structlog Documentation, Release 22.2.0

In this case, f3 has to make sure it returns something wrapped_logger.info can handle (see Adapting and Render-
ing). For the example with PrintLogger above, this means f3 must return a string.

The simplest modification a processor can make is adding new values to the event_dict. Parsing human-readable
timestamps is tedious, not so UNIX timestamps – let’s add one to each log entry:

import calendar
import time

def timestamper(logger, log_method, event_dict):
event_dict["timestamp"] = calendar.timegm(time.gmtime())
return event_dict

Important: You’re explicitly allowed to modify the event_dict parameter, because a copy has been created before
calling the first processor.

Please note that structlog comes with such a processor built in: TimeStamper.

3.4.2 Filtering

If a processor raises structlog.DropEvent, the event is silently dropped.

Therefore, the following processor drops every entry:

from structlog import DropEvent

def dropper(logger, method_name, event_dict):
raise DropEvent

But we can do better than that!

How about dropping only log entries that are marked as coming from a certain peer (e.g. monitoring)?

class ConditionalDropper:
def __init__(self, peer_to_ignore):

self._peer_to_ignore = peer_to_ignore

def __call__(self, logger, method_name, event_dict):
"""
>>> cd = ConditionalDropper("127.0.0.1")
>>> cd(None, None, {"event": "foo", "peer": "10.0.0.1"})
{'peer': '10.0.0.1', 'event': 'foo'}
>>> cd(None, None, {"event": "foo", "peer": "127.0.0.1"})
Traceback (most recent call last):
...
DropEvent
"""
if event_dict.get("peer") == self._peer_to_ignore:

raise DropEvent

return event_dict

Since it’s so common to filter by the log level, structlog comes with structlog.make_filtering_bound_logger()
that filters log entries before they even enter the processor chain. It does not use the standard library, but it does use its

20 Chapter 3. Basics

https://en.wikipedia.org/wiki/UNIX_time

structlog Documentation, Release 22.2.0

names and order of log levels.

3.4.3 Adapting and Rendering

An important role is played by the last processor because its duty is to adapt the event_dict into something the
logging methods of the wrapped logger understand. With that, it’s also the only processor that needs to know anything
about the underlying system.

It can return one of three types:

• An Unicode string (str), a bytes string (bytes), or a bytearray that is passed as the first (and only) positional
argument to the underlying logger.

• A tuple of (args, kwargs) that are passed as log_method(*args, **kwargs).

• A dictionary which is passed as log_method(**kwargs).

Therefore return "hello world" is a shortcut for return (("hello world",), {}) (the example in Chains
assumes this shortcut has been taken).

This should give you enough power to use structlog with any logging system while writing agnostic processors that
operate on dictionaries.

Changed in version 14.0.0: Allow final processor to return a dict.

Changed in version 20.2.0: Allow final processor to return a bytes.

Changed in version 21.2.0: Allow final processor to return a bytearray.

Examples

The probably most useful formatter for string based loggers is structlog.processors.JSONRenderer. Advanced
log aggregation and analysis tools like Logstash offer features like telling them “this is JSON, deal with it” instead of
fiddling with regular expressions.

For a list of shipped processors, check out the API documentation.

3.4.4 Third-Party Packages

structlog was specifically designed to be as composable and reusable as possible, so whatever you’re missing: chances
are, you can solve it with a processor! Since processors are self-contained callables, it’s easy to write your own and to
share them in separate packages.

We collect those packages in our GitHub Wiki and encourage you to add your package too!

3.5 Context Variables

The contextvars module in the Python standard library allows having a global structlog context that is local to the
current execution context. The execution context can be thread-local if using threads, or using primitives based on
asyncio, or greenlet respectively.

For example, you may want to bind certain values like a request ID or the peer’s IP address at the beginning of a web
request and have them logged out along with the local contexts you build within our views.

For that structlog provides the structlog.contextvarsmodule with a set of functions to bind variables to a context-
local context. This context is safe to be used both in threaded as well as asynchronous code.

3.5. Context Variables 21

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/stdtypes.html#bytearray
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/stdtypes.html#bytearray
https://www.elastic.co/logstash
https://github.com/hynek/structlog/wiki/Third-Party-Extensions
https://docs.python.org/3/library/contextvars.html#module-contextvars
https://docs.python.org/3/library/asyncio.html#module-asyncio
https://greenlet.readthedocs.io/

structlog Documentation, Release 22.2.0

The general flow is:

• Use structlog.configure()with structlog.contextvars.merge_contextvars() as your first proces-
sor (part of default configuration).

• Call structlog.contextvars.clear_contextvars() at the beginning of your request handler (or whenever
you want to reset the context-local context).

• Call structlog.contextvars.bind_contextvars() and structlog.contextvars.
unbind_contextvars() instead of your bound logger’s bind() and unbind() when you want to bind
and unbind key-value pairs to the context-local context. You can also use the structlog.contextvars.
bound_contextvars() context manager / decorator.

• Use structlog as normal. Loggers act as they always do, but the structlog.contextvars.
merge_contextvars() processor ensures that any context-local binds get included in all of your log messages.

• If you want to access the context-local storage, you use structlog.contextvars.get_contextvars() and
structlog.contextvars.get_merged_contextvars().

We’re sorry the word context means three different things in this itemization depending on . . . context.

>>> from structlog.contextvars import (
... bind_contextvars,
... bound_contextvars,
... clear_contextvars,
... merge_contextvars,
... unbind_contextvars,
...)
>>> from structlog import configure
>>> configure(
... processors=[
... merge_contextvars,
... structlog.processors.KeyValueRenderer(key_order=["event", "a"]),
...]
...)
>>> log = structlog.get_logger()
>>> # At the top of your request handler (or, ideally, some general
>>> # middleware), clear the contextvars-local context and bind some common
>>> # values:
>>> clear_contextvars()
>>> bind_contextvars(a=1, b=2)
{'a': <Token var=<ContextVar name='structlog_a' default=Ellipsis at ...> at ...>, 'b':
→˓<Token var=<ContextVar name='structlog_b' default=Ellipsis at ...> at ...>}
>>> # Then use loggers as per normal
>>> # (perhaps by using structlog.get_logger() to create them).
>>> log.info("hello")
event='hello' a=1 b=2
>>> # Use unbind_contextvars to remove a variable from the context.
>>> unbind_contextvars("b")
>>> log.info("world")
event='world' a=1
>>> # You can also bind key-value pairs temporarily.
>>> with bound_contextvars(b=2):
... log.info("hi")
event='hi' a=1 b=2
>>> # Now it's gone again.

(continues on next page)

22 Chapter 3. Basics

structlog Documentation, Release 22.2.0

(continued from previous page)

>>> log.info("hi")
event='hi' a=1
>>> # And when we clear the contextvars state again, it goes away.
>>> # a=None is printed due to the key_order argument passed to
>>> # KeyValueRenderer, but it is NOT present anymore.
>>> clear_contextvars()
>>> log.info("hi there")
event='hi there' a=None

3.5.1 Support for contextvars.Token

If e.g. your request handler calls a helper function that needs to temporarily override some contextvars before
restoring them back to their original values, you can use the Tokens returned by bind_contextvars() along with
reset_contextvars() to accomplish this (much like how contextvars.ContextVar.reset() works):

def foo():
bind_contextvars(a=1)
_helper()
log.info("a is restored!") # a=1

def _helper():
tokens = bind_contextvars(a=2)
log.info("a is overridden") # a=2
reset_contextvars(**tokens)

3.5.2 Example: Flask and Thread-Local Data

Let’s assume you want to bind a unique request ID, the URL path, and the peer’s IP to every log entry by storing it in
thread-local storage that is managed by context variables:

import logging
import sys
import uuid

import flask

from .some_module import some_function

import structlog

logger = structlog.get_logger()
app = flask.Flask(__name__)

@app.route("/login", methods=["POST", "GET"])
def some_route():

You would put this into some kind of middleware or processor so it's set
automatically for all requests in all views.
structlog.contextvars.clear_contextvars()
structlog.contextvars.bind_contextvars(

view=flask.request.path,
(continues on next page)

3.5. Context Variables 23

https://docs.python.org/3/library/contextvars.html#contextvars.Token
https://docs.python.org/3/library/contextvars.html#contextvars.ContextVar.reset

structlog Documentation, Release 22.2.0

(continued from previous page)

request_id=str(uuid.uuid4()),
peer=flask.request.access_route[0],

)
End of belongs-to-middleware.

log = logger.bind()
do something
...
log.info("user logged in", user="test-user")
...
some_function()
...
return "logged in!"

if __name__ == "__main__":
logging.basicConfig(

format="%(message)s", stream=sys.stdout, level=logging.INFO
)
structlog.configure(

processors=[
structlog.contextvars.merge_contextvars, # <--!!!
structlog.processors.KeyValueRenderer(

key_order=["event", "view", "peer"]
),

],
logger_factory=structlog.stdlib.LoggerFactory(),

)
app.run()

some_module.py:

from structlog import get_logger

logger = get_logger()

def some_function():
...
logger.error("user did something", something="shot_in_foot")
...

This would result among other the following lines to be printed:

event='user logged in' view='/login' peer='127.0.0.1' user='test-user' request_id=
→˓'e08ddf0d-23a5-47ce-b20e-73ab8877d736'
event='user did something' view='/login' peer='127.0.0.1' something='shot_in_foot'␣
→˓request_id='e08ddf0d-23a5-47ce-b20e-73ab8877d736'

As you can see, view, peer, and request_id are present in both log entries.

24 Chapter 3. Basics

CHAPTER

FOUR

DEVELOPMENT AFFORDANCES

structlog’s focus is production systems, but it comes with pretty console logging and handy in-development helpers
both for your comfort and your code’s quality.

4.1 Console Output

To make development a more pleasurable experience, structlog comes with the structlog.dev module.

The highlight is structlog.dev.ConsoleRenderer that offers nicely aligned and colorful1 console output.

If either of the Rich or better-exceptions packages is installed, it will also pretty-print exceptions with helpful con-
textual data. Rich takes precedence over better-exceptions, but you can configure it by passing structlog.dev.
plain_traceback() or structlog.dev.better_traceback() for the exception_formatter parameter of
ConsoleRenderer.

The following output is rendered using Rich:

You can find the code for the output above in the repo.

To use it, just add it as a renderer to your processor chain. It will recognize logger names, log levels, time stamps, stack
infos, and exc_info as produced by structlog’s processors and render them in special ways.

Warning: For pretty exceptions to work, format_exc_info() must be absent from the processors chain.

structlog’s default configuration already uses ConsoleRenderer, therefore if you want nice colorful output on the
console, you don’t have to do anything except installing Rich or better-exceptions (and Colorama on Windows). If you
want to use it along with standard library logging, we suggest the following configuration:

import structlog

structlog.configure(
processors=[

structlog.stdlib.add_logger_name,
structlog.stdlib.add_log_level,
structlog.stdlib.PositionalArgumentsFormatter(),
structlog.processors.TimeStamper(fmt="%Y-%m-%d %H:%M.%S"),
structlog.processors.StackInfoRenderer(),
structlog.dev.ConsoleRenderer() # <===

],
(continues on next page)

1 Requires the Colorama package on Windows.

25

https://rich.readthedocs.io/
https://github.com/Qix-/better-exceptions
https://github.com/hynek/structlog/blob/main/show_off.py
https://pypi.org/project/colorama/

structlog Documentation, Release 22.2.0

Fig. 1: Colorful console output by ConsoleRenderer.

(continued from previous page)

context_class=dict,
logger_factory=structlog.stdlib.LoggerFactory(),
wrapper_class=structlog.stdlib.BoundLogger,
cache_logger_on_first_use=True,

)

4.1.1 Disabling Exception Pretty-Printing

If you prefer the default terse Exception rendering, but still want Rich installed, you can disable the pretty-printing
by instantiating structlog.dev.ConsoleRenderer() yourself and passing exception_formatter=structlog.
dev.plain_traceback.

26 Chapter 4. Development Affordances

structlog Documentation, Release 22.2.0

4.2 Testing

structlog comes with tools for testing the logging behavior of your application.

If you need functionality similar to unittest.TestCase.assertLogs(), or you want to capture all logs for some
other reason, you can use the structlog.testing.capture_logs() context manager:

>>> from structlog import get_logger
>>> from structlog.testing import capture_logs
>>> with capture_logs() as cap_logs:
... get_logger().bind(x="y").info("hello")
>>> cap_logs
[{'x': 'y', 'event': 'hello', 'log_level': 'info'}]

Note that inside the context manager all configured processors are disabled.

Note: capture_logs() relies on changing the configuration. If you have cache_logger_on_first_use enabled for
performance, any cached loggers will not be affected, so it’s recommended you do not enable it during tests.

You can build your own helpers using structlog.testing.LogCapture. For example a pytest fixture to capture log
output could look like this:

@pytest.fixture(name="log_output")
def fixture_log_output():

return LogCapture()

@pytest.fixture(autouse=True)
def fixture_configure_structlog(log_output):

structlog.configure(
processors=[log_output]

)

def test_my_stuff(log_output):
do_something()
assert log_output.entries == [...]

You can also use structlog.testing.CapturingLogger (directly, or via CapturingLoggerFactory that always
returns the same logger) that is more low-level and great for unit tests:

>>> import structlog
>>> cf = structlog.testing.CapturingLoggerFactory()
>>> structlog.configure(logger_factory=cf, processors=[structlog.processors.
→˓JSONRenderer()])
>>> log = get_logger()
>>> log.info("test!")
>>> cf.logger.calls
[CapturedCall(method_name='info', args=('{"event": "test!"}',), kwargs={})]

Additionally structlog also ships with a logger that just returns whatever it gets passed into it: structlog.testing.
ReturnLogger.

4.2. Testing 27

https://docs.python.org/3/library/unittest.html#unittest.TestCase.assertLogs
https://docs.pytest.org/

structlog Documentation, Release 22.2.0

>>> from structlog import ReturnLogger
>>> ReturnLogger().info(42) == 42
True
>>> obj = ["hi"]
>>> ReturnLogger().info(obj) is obj
True
>>> ReturnLogger().info("hello", when="again")
(('hello',), {'when': 'again'})

4.3 Type Hints

Static type hints – together with a type checker like Mypy – are an excellent way to make your code more robust,
self-documenting, and maintainable in the long run. And as of 20.2.0, structlog comes with type hints for all of its
APIs.

Since structlog is highly configurable and tries to give a clean façade to its users, adding types without breaking com-
patibility – while remaining useful! – was a formidable task.

The main problem is that structlog.get_logger() returns whatever you’ve configured the bound logger to be.
The only commonality are the binding methods like bind() and we’ve extracted them into the structlog.typing.
BindableLogger Protocol. But using that as a return type is worse than useless, because you’d have to use typing.
cast() on every logger returned by structlog.get_logger(), if you wanted to actually call any logging methods.

The second problem is that said bind() and its cousins are inherited from a common base class (a big mistake in
hindsight) and can’t know what concrete class subclasses them and therefore what type they are returning.

The chosen solution is adding structlog.stdlib.get_logger() that just calls structlog.get_logger() but
has the correct type hints and adding structlog.stdlib.BoundLogger.bind et al that also only delegate to the
base class.

structlog.get_logger() is typed as returning typing.Any so you can use your own type annotation and stick to
the old APIs, if that’s what you prefer:

import structlog

logger: structlog.stdlib.BoundLogger = structlog.get_logger()
logger.info("hi") # <- ok
logger.msg("hi") # <- Mypy: 'error: "BoundLogger" has no attribute "msg"'

28 Chapter 4. Development Affordances

https://mypy.readthedocs.io/en/stable/
https://docs.python.org/3/library/typing.html#typing.Protocol
https://docs.python.org/3/library/typing.html#typing.cast
https://docs.python.org/3/library/typing.html#typing.cast
https://www.youtube.com/watch?v=3MNVP9-hglc
https://python-patterns.guide/gang-of-four/composition-over-inheritance/
https://docs.python.org/3/library/typing.html#typing.Any

CHAPTER

FIVE

INTEGRATION WITH EXISTING SYSTEMS

structlog is both zero-config as well as highly configurable. You can use it on its own or integrate with existing systems.
Dedicated support for the standard library and Twisted is shipped out-of-the-box.

5.1 Frameworks

To have consistent log output, it makes sense to configure structlog before any logging is done. The best place to
perform your configuration varies with applications and frameworks. If you use standard library’s logging, it makes
sense to configure them next to each other.

5.1.1 OpenTelemetry

The Python OpenTelemetry SDK offers an easy API to get the current span, so you can enrich your logs with a straight-
forward processor:

from opentelemetry import trace

def add_open_telemetry_spans(_, __, event_dict):
span = trace.get_current_span()
if not span.is_recording():

event_dict["span"] = None
return event_dict

ctx = span.get_span_context()
parent = getattr(span, "parent", None)

event_dict["span"] = {
"span_id": hex(ctx.span_id),
"trace_id": hex(ctx.trace_id),
"parent_span_id": None if not parent else hex(parent.span_id),

}

return event_dict

29

https://opentelemetry.io/docs/instrumentation/python/

structlog Documentation, Release 22.2.0

5.1.2 Django

django-structlog is a popular and well-maintained package that does all the heavy lifting.

5.1.3 Flask

See Flask’s Logging docs.

Generally speaking: configure structlog before instantiating flask.Flask.

Here’s a signal handler that binds various request details into context variables:

def bind_request_details(sender: Flask, **extras: dict[str, Any]) -> None:
structlog.contextvars.clear_contextvars()
structlog.contextvars.bind_contextvars(

request_id=request.headers.get("X-Unique-ID", "NONE"),
peer=peer,

)

if current_user.is_authenticated:
structlog.contextvars.bind_contextvars(

user_id=current_user.get_id(),
)

You add it to an existing app like this:

from flask import request_started

request_started.connect(bind_request_details, app)

5.1.4 Pyramid

Configure it in the application constructor.

Here’s an example for a Pyramid Tween that stores various request-specific data into context variables:

@dataclass
class StructLogTween:

handler: Callable[[Request], Response]
registry: Registry

def __call__(self, request: Request) -> Response:
structlog.contextvars.clear_contextvars()
structlog.contextvars.bind_contextvars(

peer=request.client_addr,
request_id=request.headers.get("X-Unique-ID", "NONE"),
user_agent=request.environ.get("HTTP_USER_AGENT", "UNKNOWN"),
user=request.authenticated_userid,

)

return self.handler(request)

30 Chapter 5. Integration with Existing Systems

https://pypi.org/project/django-structlog/
https://flask.palletsprojects.com/en/latest/logging/
https://flask.palletsprojects.com/en/latest/signals/
https://docs.pylonsproject.org/projects/pyramid/en/latest/narr/startup.html#the-startup-process
https://kapeli.com/dash_share?docset_file=pyramid&docset_name=pyramid&path=narr/hooks.html%23registering-tweens&platform=pyramid

structlog Documentation, Release 22.2.0

5.1.5 Celery

Celery’s multi-process architecture leads unavoidably to race conditions that show up as interleaved logs. It ships
standard library-based helpers in the form of celery.utils.log.get_task_logger() that you should use inside
of tasks to prevent that problem.

The most straight-forward way to integrate that with structlog is using Standard Library Logging and wrapping that
logger using structlog.wrap_logger():

from celery.utils.log import get_task_logger

logger = structlog.wrap_logger(get_task_logger(__name__))

If you want to automatically bind task metadata to your Context Variables, you can use Celery’s signals:

from celery import signals

@signals.task_prerun.connect
def on_task_prerun(sender, task_id, task, args, kwargs, **_):

structlog.contextvars.bind_contextvars(task_id=task_id, task_name=task.name)

See this issue for more details.

5.1.6 Twisted

The plugin definition is the best place. If your app is not a plugin, put it into your tac file.

5.2 Standard Library Logging

Ideally, structlog should be able to be used as a drop-in replacement for standard library’s logging by wrapping
it. In other words, you should be able to replace your call to logging.getLogger() by a call to structlog.
get_logger() and things should keep working as before (if structlog is configured right, see Suggested Configurations
below).

If you run into incompatibilities, it is a bug so please take the time to report it! If you’re a heavy logging user, your
help to ensure a better compatibility would be highly appreciated!

Important: The quickest way to get started with structlog and logging is structlog.stdlib.
recreate_defaults(). It will recreate the default configuration on top of logging and optionally configure
logging for you.

5.2.1 Just Enough logging

If you want to use structlog with logging, you should have at least a fleeting understanding on how the standard
library operates because structlog will not do any magic things in the background for you. Most importantly you have
to configure the logging system additionally to configuring structlog.

Usually it is enough to use:

5.2. Standard Library Logging 31

https://docs.celeryq.dev/
https://docs.celeryq.dev/en/stable/userguide/tasks.html#logging
https://docs.celeryq.dev/en/stable/userguide/signals.html
https://github.com/hynek/structlog/issues/287
https://docs.twisted.org/en/stable/core/howto/plugin.html
https://docs.twisted.org/en/stable/core/howto/application.html
https://docs.python.org/3/library/logging.html#module-logging
https://docs.python.org/3/library/logging.html#logging.getLogger
https://github.com/hynek/structlog/issues
https://github.com/hynek/structlog/issues?q=is%3Aopen+is%3Aissue+label%3Astdlib

structlog Documentation, Release 22.2.0

import logging
import sys

logging.basicConfig(
format="%(message)s",
stream=sys.stdout,
level=logging.INFO,

)

This will send all log messages with the log level logging.INFO and above (that means that e.g. logging.debug
calls are ignored) to standard out without any special formatting by the standard library.

If you require more complex behavior, please refer to the standard library’s logging documentation.

5.2.2 Concrete Bound Logger

structlog ships a stdlib-specific bound logger that mirrors the log methods of standard library’s logging.Logger with
correct type hints.

If you want to take advantage of said type hints, you have to either annotate the logger coming from structlog.
get_logger(), or use structlog.stdlib.get_logger() that has the appropriate type hints. Please note though,
that it will neither configure nor verify your configuration. It will call structlog.get_logger() just like if you
would’ve called it – the only difference are the type hints.

See also Type Hints.

asyncio

For asyncio applications, you may not want your whole application to block while your processor chain is formatting
your log entries. For that use case structlog comes with structlog.stdlib.AsyncBoundLogger that will do all
processing in a thread pool executor.

This means an increased computational cost per log entry but your application will never block because of logging.

To use it, configure structlog to use AsyncBoundLogger as wrapper_class.

5.2.3 Processors

structlog comes with a few standard library-specific processors:

render_to_log_kwargs():
Renders the event dictionary into keyword arguments for logging.log that attaches everything except the event
field to the extra argument. This is useful if you want to render your log entries entirely within logging.

filter_by_level():
Checks the log entry’s log level against the configuration of standard library’s logging. Log entries below the
threshold get silently dropped. Put it at the beginning of your processing chain to avoid expensive operations
from happening in the first place.

add_logger_name():
Adds the name of the logger to the event dictionary under the key logger.

ExtraAdder():
Add extra attributes of logging.LogRecord objects to the event dictionary.

32 Chapter 5. Integration with Existing Systems

https://docs.python.org/3/library/logging.html#logging-levels
https://docs.python.org/3/library/logging.html#logging.Logger

structlog Documentation, Release 22.2.0

This processor can be used for adding data passed in the extra parameter of the logging module’s log methods
to the event dictionary.

add_log_level():
Adds the log level to the event dictionary under the key level.

add_log_level_number():
Adds the log level number to the event dictionary under the key level_number. Log level numbers map to
the log level names. The Python stdlib uses them for filtering logic. This adds the same numbers so users can
leverage similar filtering. Compare:

level in ("warning", "error", "critical")
level_number >= 30

The mapping of names to numbers is in structlog.stdlib._NAME_TO_LEVEL.

PositionalArgumentsFormatter():
This processes and formats positional arguments (if any) passed to log methods in the same way the logging
module would do, e.g. logger.info("Hello, %s", name).

structlog also comes with ProcessorFormatter which is a logging.Formatter that enables you to format non-
structlog log entries using structlog renderers and multiplex structlog’s output with different renderers (see below for
an example).

5.2.4 Suggested Configurations

Note: We do appreciate that fully integrating structlog with standard library’s logging is fiddly when done for the
first time.

This is the price of flexibility and unfortunately – given the different needs of our users – we can’t make it any simpler
without compromising someone’s use-cases. However, once it is set up, you can rely on not having to ever touch it
again.

Depending where you’d like to do your formatting, you can take one of four approaches:

Don’t Integrate

The most straight-forward option is to configure standard library logging close enough to what structlog is logging
and leaving it at that.

Since these are usually log entries from third parties that don’t take advantage of structlog’s features, this is surprisingly
often a perfectly adequate approach.

For instance, if you log JSON in production, configure logging to use python-json-logger to make it print JSON too,
and then tweak the configuration to match their outputs.

5.2. Standard Library Logging 33

https://github.com/madzak/python-json-logger

structlog Documentation, Release 22.2.0

Rendering Within structlog

This is the simplest approach where structlog does all the heavy lifting and passes a fully-formatted string to logging.
Chances are, this is all you need.

A basic configuration to output structured logs in JSON format looks like this:

import structlog

structlog.configure(
processors=[

If log level is too low, abort pipeline and throw away log entry.
structlog.stdlib.filter_by_level,
Add the name of the logger to event dict.
structlog.stdlib.add_logger_name,
Add log level to event dict.
structlog.stdlib.add_log_level,
Perform %-style formatting.
structlog.stdlib.PositionalArgumentsFormatter(),
Add a timestamp in ISO 8601 format.
structlog.processors.TimeStamper(fmt="iso"),
If the "stack_info" key in the event dict is true, remove it and
render the current stack trace in the "stack" key.
structlog.processors.StackInfoRenderer(),
If the "exc_info" key in the event dict is either true or a
sys.exc_info() tuple, remove "exc_info" and render the exception
with traceback into the "exception" key.
structlog.processors.format_exc_info,
If some value is in bytes, decode it to a unicode str.
structlog.processors.UnicodeDecoder(),
Add callsite parameters.
structlog.processors.CallsiteParameterAdder(

{
structlog.processors.CallsiteParameter.FILENAME,
structlog.processors.CallsiteParameter.FUNC_NAME,
structlog.processors.CallsiteParameter.LINENO,

}
),
Render the final event dict as JSON.
structlog.processors.JSONRenderer()

],
`wrapper_class` is the bound logger that you get back from
get_logger(). This one imitates the API of `logging.Logger`.
wrapper_class=structlog.stdlib.BoundLogger,
`logger_factory` is used to create wrapped loggers that are used for
OUTPUT. This one returns a `logging.Logger`. The final value (a JSON
string) from the final processor (`JSONRenderer`) will be passed to
the method of the same name as that you've called on the bound logger.
logger_factory=structlog.stdlib.LoggerFactory(),
Effectively freeze configuration after creating the first bound
logger.
cache_logger_on_first_use=True,

)

To make your program behave like a proper 12 Factor App that outputs only JSON to stdout, configure the logging

34 Chapter 5. Integration with Existing Systems

https://12factor.net/logs

structlog Documentation, Release 22.2.0

module like this:

import logging
import sys

logging.basicConfig(
format="%(message)s",
stream=sys.stdout,
level=logging.INFO,

)

In this case only your own logs are formatted as JSON:

>>> structlog.get_logger("test").warning("hello")
{"event": "hello", "logger": "test", "level": "warning", "timestamp": "2017-03-
→˓06T07:39:09.518720Z"}

>>> logging.getLogger("test").warning("hello")
hello

Rendering Using logging-based Formatters

You can choose to use structlog only for building the event dictionary and leave all formatting – additionally to the
output – to the standard library.

import structlog

structlog.configure(
processors=[

structlog.stdlib.filter_by_level,
structlog.stdlib.add_logger_name,
structlog.stdlib.add_log_level,
structlog.stdlib.PositionalArgumentsFormatter(),
structlog.processors.StackInfoRenderer(),
structlog.processors.format_exc_info,
structlog.processors.UnicodeDecoder(),
Transform event dict into `logging.Logger` method arguments.
"event" becomes "msg" and the rest is passed as a dict in
"extra". IMPORTANT: This means that the standard library MUST
render "extra" for the context to appear in log entries! See
warning below.
structlog.stdlib.render_to_log_kwargs,

],
logger_factory=structlog.stdlib.LoggerFactory(),
wrapper_class=structlog.stdlib.BoundLogger,
cache_logger_on_first_use=True,

)

Now you have the event dict available within each log record. If you want all your log entries (i.e. also those not from
your application / structlog) to be formatted as JSON, you can use the python-json-logger library:

import logging
import sys

(continues on next page)

5.2. Standard Library Logging 35

https://github.com/madzak/python-json-logger

structlog Documentation, Release 22.2.0

(continued from previous page)

from pythonjsonlogger import jsonlogger

handler = logging.StreamHandler(sys.stdout)
handler.setFormatter(jsonlogger.JsonFormatter())
root_logger = logging.getLogger()
root_logger.addHandler(handler)

Now both structlog and logging will emit JSON logs:

>>> structlog.get_logger("test").warning("hello")
{"message": "hello", "logger": "test", "level": "warning"}

>>> logging.getLogger("test").warning("hello")
{"message": "hello"}

Warning: With this approach, it’s the standard library logging formatter’s duty to do something useful with the
event dict. In the above example that’s jsonlogger.JsonFormatter.

Keep this in mind if you only get the event name without any context, and exceptions are ostensibly swallowed.

Rendering Using structlog-based Formatters Within logging

Finally, the most ambitious approach. Here, you use structlog’s ProcessorFormatter as a logging.Formatter for
both logging as well as structlog log entries.

Consequently, the output is the duty of the standard library too.

ProcessorFormatter has two parts to its API:

1. On the structlog side, the processor chain must be configured to end with structlog.stdlib.
ProcessorFormatter.wrap_for_formatter() as the renderer. It converts the processed event dictionary
into something that ProcessorFormatter understands.

2. On the logging side, you must configure ProcessorFormatter as your formatter of choice. logging then
calls ProcessorFormatter’s format() method.

For that, ProcessorFormatter wraps a processor chain that is responsible for rendering your log entries to
strings.

Thus, the simplest possible configuration looks like the following:

import logging
import structlog

structlog.configure(
processors=[

Prepare event dict for `ProcessorFormatter`.
structlog.stdlib.ProcessorFormatter.wrap_for_formatter,

],
logger_factory=structlog.stdlib.LoggerFactory(),

)

(continues on next page)

36 Chapter 5. Integration with Existing Systems

https://docs.python.org/3/library/logging.html#logging.Formatter

structlog Documentation, Release 22.2.0

(continued from previous page)

formatter = structlog.stdlib.ProcessorFormatter(
processors=[structlog.dev.ConsoleRenderer()],

)

handler = logging.StreamHandler()
Use OUR `ProcessorFormatter` to format all `logging` entries.
handler.setFormatter(formatter)
root_logger = logging.getLogger()
root_logger.addHandler(handler)
root_logger.setLevel(logging.INFO)

which will allow both of these to work in other modules:

>>> import logging
>>> import structlog

>>> logging.getLogger("stdlog").info("woo")
woo _from_structlog=False _record=<LogRecord:...>
>>> structlog.get_logger("structlog").info("amazing", events="oh yes")
amazing _from_structlog=True _record=<LogRecord:...> events=oh yes

Of course, you probably want timestamps and log levels in your output. The ProcessorFormatter has a
foreign_pre_chain argument which is responsible for adding properties to events from the standard library – i.e. that
do not originate from a structlog logger – and which should in general match the processors argument to structlog.
configure() so you get a consistent output.

_from_structlog and _record allow your processors to determine whether the log entry is coming from structlog,
and to extract information from logging.LogRecords and add them to the event dictionary. However, you probably
don’t want to have them in your log files, thus we’ve added the ProcessorFormatter.remove_processors_meta
processor to do so conveniently.

For example, to add timestamps, log levels, and traceback handling to your logs without _from_structlog and
_record noise you should do:

timestamper = structlog.processors.TimeStamper(fmt="%Y-%m-%d %H:%M:%S")
shared_processors = [

structlog.stdlib.add_log_level,
timestamper,

]

structlog.configure(
processors=shared_processors + [

structlog.stdlib.ProcessorFormatter.wrap_for_formatter,
],
logger_factory=structlog.stdlib.LoggerFactory(),
cache_logger_on_first_use=True,

)

formatter = structlog.stdlib.ProcessorFormatter(
These run ONLY on `logging` entries that do NOT originate within
structlog.
foreign_pre_chain=shared_processors,
These run on ALL entries after the pre_chain is done.

(continues on next page)

5.2. Standard Library Logging 37

structlog Documentation, Release 22.2.0

(continued from previous page)

processors=[
Remove _record & _from_structlog.
structlog.stdlib.ProcessorFormatter.remove_processors_meta,
structlog.dev.ConsoleRenderer(),

],
)

which (given the same logging.* calls as in the previous example) will result in:

>>> logging.getLogger("stdlog").info("woo")
2021-11-15 11:41:47 [info] woo
>>> structlog.get_logger("structlog").info("amazing", events="oh yes")
2021-11-15 11:41:47 [info] amazing events=oh yes

This allows you to set up some sophisticated logging configurations. For example, to use the standard library’s
logging.config.dictConfig to log colored logs to the console and plain logs to a file you could do:

import logging.config
import structlog

timestamper = structlog.processors.TimeStamper(fmt="%Y-%m-%d %H:%M:%S")
pre_chain = [

Add the log level and a timestamp to the event_dict if the log entry
is not from structlog.
structlog.stdlib.add_log_level,
Add extra attributes of LogRecord objects to the event dictionary
so that values passed in the extra parameter of log methods pass
through to log output.
structlog.stdlib.ExtraAdder(),
timestamper,

]

def extract_from_record(_, __, event_dict):
"""
Extract thread and process names and add them to the event dict.
"""
record = event_dict["_record"]
event_dict["thread_name"] = record.threadName
event_dict["process_name"] = record.processName

return event_dict

logging.config.dictConfig({
"version": 1,
"disable_existing_loggers": False,
"formatters": {

"plain": {
"()": structlog.stdlib.ProcessorFormatter,
"processors": [

structlog.stdlib.ProcessorFormatter.remove_processors_meta,
structlog.dev.ConsoleRenderer(colors=False),

],
(continues on next page)

38 Chapter 5. Integration with Existing Systems

structlog Documentation, Release 22.2.0

(continued from previous page)

"foreign_pre_chain": pre_chain,
},
"colored": {

"()": structlog.stdlib.ProcessorFormatter,
"processors": [

extract_from_record,
structlog.stdlib.ProcessorFormatter.remove_processors_meta,
structlog.dev.ConsoleRenderer(colors=True),

],
"foreign_pre_chain": pre_chain,

},
},
"handlers": {

"default": {
"level": "DEBUG",
"class": "logging.StreamHandler",
"formatter": "colored",

},
"file": {

"level": "DEBUG",
"class": "logging.handlers.WatchedFileHandler",
"filename": "test.log",
"formatter": "plain",

},
},
"loggers": {

"": {
"handlers": ["default", "file"],
"level": "DEBUG",
"propagate": True,

},
}

})
structlog.configure(

processors=[
structlog.stdlib.add_log_level,
structlog.stdlib.PositionalArgumentsFormatter(),
timestamper,
structlog.processors.StackInfoRenderer(),
structlog.processors.format_exc_info,
structlog.stdlib.ProcessorFormatter.wrap_for_formatter,

],
logger_factory=structlog.stdlib.LoggerFactory(),
wrapper_class=structlog.stdlib.BoundLogger,
cache_logger_on_first_use=True,

)

This defines two formatters: one plain and one colored. Both are run for each log entry. Log entries that do not originate
from structlog, are additionally pre-processed using a cached timestamper and add_log_level().

Additionally, for both logging and structlog – but only for the colorful logger – we also extract some data from
logging.LogRecord:

5.2. Standard Library Logging 39

https://docs.python.org/3/library/logging.html#logging.LogRecord

structlog Documentation, Release 22.2.0

>>> logging.getLogger().warning("bar")
2021-11-15 13:26:52 [warning] bar process_name=MainProcess thread_name=MainThread

>>> structlog.get_logger("structlog").warning("foo", x=42)
2021-11-15 13:26:52 [warning] foo process_name=MainProcess thread_name=MainThread␣
→˓x=42

>>> pathlib.Path("test.log").read_text()
2021-11-15 13:26:52 [warning] bar
2021-11-15 13:26:52 [warning] foo x=42

(Sadly, you have to imagine the colors in the first two outputs.)

If you leave foreign_pre_chain as None, formatting will be left to logging. Meaning: you can define a format
for ProcessorFormatter too!

5.3 Twisted

Warning: Since sys.exc_clear has been dropped in Python 3, there is currently no way to avoid multiple
tracebacks in your log files if using structlog together with Twisted on Python 3.

Note: structlog currently only supports the legacy – but still perfectly working – Twisted logging system found in
twisted.python.log.

5.3.1 Concrete Bound Logger

To make structlog’s behavior less magical, it ships with a Twisted-specific wrapper class that has an explicit API instead
of improvising: structlog.twisted.BoundLogger. It behaves exactly like the generic structlog.BoundLogger
except:

• it’s slightly faster due to less overhead,

• has an explicit API (msg() and err()),

• hence causing less cryptic error messages if you get method names wrong.

In order to avoid that structlog disturbs your CamelCase harmony, it comes with an alias for structlog.get_logger
called structlog.getLogger.

5.3.2 Processors

structlog comes with two Twisted-specific processors:

structlog.twisted.EventAdapter()
This is useful if you have an existing Twisted application and just want to wrap your loggers for now. It takes
care of transforming your event dictionary into something twisted.python.log.err can digest.

For example:

40 Chapter 5. Integration with Existing Systems

https://docs.twisted.org/en/stable/api/twisted.python.log.html#err

structlog Documentation, Release 22.2.0

def onError(fail):
failure = fail.trap(MoonExploded)
log.err(failure, _why="event-that-happened")

will still work as expected.

Needs to be put at the end of the processing chain. It formats the event using a renderer that needs to be passed
into the constructor:

configure(processors=[EventAdapter(KeyValueRenderer()])

The drawback of this approach is that Twisted will format your exceptions as multi-line log entries which is
painful to parse. Therefore structlog comes with:

structlog.twisted.JSONRenderer()
Goes a step further and circumvents Twisted logger’s Exception / Failure handling and renders it itself as JSON
strings. That gives you regular and simple-to-parse single-line JSON log entries no matter what happens.

5.3.3 Bending Foreign Logging To Your Will

structlog comes with a wrapper for Twisted’s log observers to ensure the rest of your logs are in JSON too: structlog.
twisted.JSONLogObserverWrapper.

What it does is determining whether a log entry has been formatted by structlog.twisted.JSONRenderer and if
not, converts the log entry to JSON with event being the log message and putting Twisted’s system into a second key.

So for example:

2013-09-15 22:02:18+0200 [-] Log opened.

becomes:

2013-09-15 22:02:18+0200 [-] {"event": "Log opened.", "system": "-"}

There is obviously some redundancy here. Also, I’m presuming that if you write out JSON logs, you’re going to let
something else parse them which makes the human-readable date entries more trouble than they’re worth.

To get a clean log without timestamps and additional system fields ([-]), structlog comes with structlog.
twisted.PlainFileLogObserver that writes only the plain message to a file and structlog.
twisted.plainJSONStdOutLogger that composes it with the aforementioned structlog.twisted.
JSONLogObserverWrapper and gives you a pure JSON log without any timestamps or other noise straight to
standard out:

$ twistd -n --logger structlog.twisted.plainJSONStdOutLogger web
{"event": "Log opened.", "system": "-"}
{"event": "twistd 13.1.0 (python 2.7.3) starting up.", "system": "-"}
{"event": "reactor class: twisted...EPollReactor.", "system": "-"}
{"event": "Site starting on 8080", "system": "-"}
{"event": "Starting factory <twisted.web.server.Site ...>", ...}
...

5.3. Twisted 41

https://en.wikipedia.org/wiki/Standard_out#Standard_output_.28stdout.29

structlog Documentation, Release 22.2.0

5.3.4 Suggested Configuration

import structlog

structlog.configure(
processors=[

structlog.processors.StackInfoRenderer(),
structlog.twisted.JSONRenderer()

],
context_class=dict,
logger_factory=structlog.twisted.LoggerFactory(),
wrapper_class=structlog.twisted.BoundLogger,
cache_logger_on_first_use=True,

)

See also Logging Best Practices.

42 Chapter 5. Integration with Existing Systems

CHAPTER

SIX

STRUCTLOG IN PRACTICE

The following chapters deal with considerations of using structlog in the real world.

6.1 Recipes

Thanks to the fact that structlog is entirely based on dictionaries and callables, the sky is the limit with what you an
achieve. In the beginning that can be daunting, so here are a few examples of tasks that have come up repeatedly.

Please note that recipes related to integration with frameworks have an own chapter.

6.1.1 Renaming the event Key

The name of the event is hard-coded in structlog to event. But that doesn’t mean it has to be called that in your logs.

With the structlog.processors.EventRenamer processor you can for instance rename the log message to msg
and use event for something custom, that you bind to _event in your code:

>>> from structlog.processors import EventRenamer
>>> event_dict = {"event": "something happened", "_event": "our event!"}
>>> EventRenamer("msg", "_event")(None, None, event_dict)
{'msg': 'something happened', 'event': 'our event!'}

6.1.2 Fine-Grained Log-Level Filtering

structlog’s native log levels as provided by structlog.make_filtering_bound_logger() only know one log level
– the one that is passed to make_filtering_bound_logger(). Sometimes, that can be a bit too coarse, though.

You can achieve finer control by adding the CallsiteParameterAdder processor and writing a simple processor that
acts on the call site data added.

Let’s assume you have the following code:

logger = structlog.get_logger()

def f():
logger.info("f called")

def g():
logger.info("g called")

(continues on next page)

43

structlog Documentation, Release 22.2.0

(continued from previous page)

f()
g()

And you don’t want to see log entries from function f. You add CallsiteParameterAdder to the processor chain
and then look at the func_name field in the event dict:

def filter_f(_, __, event_dict):
if event_dict.get("func_name") == "f":

raise structlog.DropEvent

return event_dict

structlog.configure(
processors=[

structlog.processors.CallsiteParameterAdder(
[structlog.processors.CallsiteParameter.FUNC_NAME]

),
filter_f, # <-- your processor!
structlog.processors.KeyValueRenderer(),

]
)

Running this gives you:

event='g called' func_name='g'

CallsiteParameterAdder is very powerful in what info it can add, so your possibilities are limitless. Pick the data
you’re interested in from the structlog.processors.CallsiteParameter Enum.

6.1.3 Custom Wrappers

The type of the bound loggers that are returned by structlog.get_logger() is called the wrapper class, because it
wraps the original logger that takes care of the output. This wrapper class is configurable.

Originally, structlog used a generic wrapper class structlog.BoundLogger by default. That class still ships with
structlog and can wrap any logger class by intercepting unknown method names and proxying them to the wrapped
logger.

Nowadays, the default is a structlog.typing.FilteringBoundLogger that imitates standard library’s log levels
with the possibility of efficiently filtering at a certain level (inactive log methods are a plain return None each).

If you’re integrating with logging or Twisted, you may was to use one of their specific bound loggers (structlog.
stdlib.BoundLogger and structlog.twisted.BoundLogger, respectively).

—

On top of that all, you can also write your own wrapper classes. To make it easy for you, structlog comes with the class
structlog.BoundLoggerBase which takes care of all data binding duties so you just add your log methods if you
choose to sub-class it.

44 Chapter 6. structlog in Practice

https://docs.python.org/3/library/enum.html#enum.Enum
https://docs.python.org/3/library/logging.html#module-logging

structlog Documentation, Release 22.2.0

Example

It’s easiest to demonstrate with an example:

>>> from structlog import BoundLoggerBase, PrintLogger, wrap_logger
>>> class SemanticLogger(BoundLoggerBase):
... def info(self, event, **kw):
... if not "status" in kw:
... return self._proxy_to_logger("info", event, status="ok", **kw)
... else:
... return self._proxy_to_logger("info", event, **kw)
...
... def user_error(self, event, **kw):
... self.info(event, status="user_error", **kw)
>>> log = wrap_logger(PrintLogger(), wrapper_class=SemanticLogger)
>>> log = log.bind(user="fprefect")
>>> log.user_error("user.forgot_towel")
user='fprefect' status='user_error' event='user.forgot_towel'

You can observe the following:

• The wrapped logger can be found in the instance variable structlog.BoundLoggerBase._logger.

• The helper method structlog.BoundLoggerBase._proxy_to_logger() that is a DRY convenience func-
tion that runs the processor chain, handles possible structlog.DropEvents and calls a named function on
_logger.

• You can run the chain by hand through using structlog.BoundLoggerBase._process_event() .

These two methods and one attribute are all you need to write own bound loggers.

6.1.4 Passing Context to Worker Threads

Thread-local context data based on context variables is – as the name says – local to the thread that binds it. When
using threads to process work in parallel, you have to pass the thread-local context into the worker threads. One way is
to retrieve the context vars and pass them along to the worker threads. Then, Inside of the worker, re-bind them using
bind_contextvars.

The following example uses pathos to create a ThreadPool. The context variables are retrieved and passed as the first
argument to the partial function. The pool invokes the partial function, once for each element of workers. Inside of
do_some_work, the context vars are bound and a message about the great work being performed is logged – including
the request_id key / value pair.

from functools import partial

import structlog

from structlog.contextvars import bind_contextvars
from pathos.threading import ThreadPool

logger = structlog.get_logger(__name__)

def do_some_work(ctx, this_worker):
bind_contextvars(**ctx)

(continues on next page)

6.1. Recipes 45

https://en.wikipedia.org/wiki/Don%27t_repeat_yourself
https://pypi.org/project/pathos/

structlog Documentation, Release 22.2.0

(continued from previous page)

logger.info("WorkerDidSomeWork", worker=this_worker)

def structlog_with_threadpool(f):
ctx = structlog.contextvars.get_contextvars()
func = partial(f, ctx)
workers = ["1", "2", "3"]

with ThreadPool() as pool:
return list(pool.map(func, workers))

def manager(request_id: str):
bind_contextvars(request_id=request_id)
logger.info("StartingWorkers")
structlog_with_threadpool(do_some_work)

See the issue 425 for a more complete example.

6.2 Logging Best Practices

Logging is not a new concept and in no way special to Python. Logfiles have existed for decades and there’s little reason
to reinvent the wheel in our little world.

Therefore let’s rely on proven tools as much as possible and do only the absolutely necessary inside of Python1.

A simple but powerful approach is to log to unbuffered standard out and let other tools take care of the rest. That can
be your terminal window while developing, it can be systemd redirecting your log entries to syslogd, or your cluster
manager. It doesn’t matter where or how your application is running, it just works.

This is why the popular Twelve-Factor App methodology suggests just that.

6.2.1 Canonical Log Lines

Generally speaking, having as few log entries per request as possible is a good thing. The less noise, the more insights.

structlog’s ability to bind data to loggers incrementally – plus loggers that are local to the current execution context –
can help you to minimize the output to a single log entry.

At Stripe, this concept is called Canonical Log Lines.
1 This is obviously a privileged UNIX-centric view but even Windows has tools and means for log management although we won’t be able to

discuss them here.

46 Chapter 6. structlog in Practice

https://github.com/hynek/structlog/issues/425
https://en.wikipedia.org/wiki/Standard_out#Standard_output_.28stdout.29
https://en.wikipedia.org/wiki/Systemd
https://en.wikipedia.org/wiki/Syslogd
https://kubernetes.io/docs/concepts/cluster-administration/logging/
https://kubernetes.io/docs/concepts/cluster-administration/logging/
https://12factor.net/logs
https://brandur.org/canonical-log-lines

structlog Documentation, Release 22.2.0

6.2.2 Pretty Printing vs. Structured Output

Colorful and pretty printed log messages are nice during development when you locally run your code.

However, in production you should emit structured output (like JSON) which is a lot easier to parse by log aggregators.
Since you already log in a structured way, writing JSON output with structlog comes naturally. You can even generate
structured exception tracebacks. This makes analyzing errors easier, since log aggregators can render JSON much
better than multiline strings with a lot escaped quotation marks.

Here is a simple example of how you can have pretty logs during development and JSON output when your app is
running in a production context:

>>> import sys
>>> import structlog
>>>
>>> shared_processors = [
... # Processors that have nothing to do with output,
... # e.g., add timestamps or log level names.
...]
>>> if sys.stderr.isatty():
... # Pretty printing when we run in a terminal session.
... # Automatically prints pretty tracebacks when "rich" is installed
... processors = shared_processors + [
... structlog.dev.ConsoleRenderer(),
...]
... else:
... # Print JSON when we run, e.g., in a Docker container.
... # Also print structured tracebacks.
... processors = shared_processors + [
... structlog.processors.dict_tracebacks,
... structlog.processors.JSONRenderer(),
...]
>>> structlog.configure(processors)

6.2.3 Centralized Logging

Nowadays you usually don’t want your log files in compressed archives distributed over dozens – if not thousands – of
servers or cluster nodes. You want them in a single location. Parsed, indexed, and easy to search.

ELK

The ELK stack (Elasticsearch, Logstash, Kibana) from Elastic is a great way to store, parse, and search your logs.

The way it works is that you have local log shippers like Filebeat that parse your log files and forward the log entries
to your Logstash server. Logstash parses the log entries and stores them in Elasticsearch. Finally, you can view and
search them in Kibana.

If your log entries consist of a JSON dictionary, this is fairly easy and efficient. All you have to do is to tell Logstash
either that your log entries are prepended with a timestamp from TimeStamper or the name of your timestamp field.

6.2. Logging Best Practices 47

https://www.elastic.co/elasticsearch
https://www.elastic.co/logstash
https://www.elastic.co/kibana
https://github.com/elastic/beats/tree/master/filebeat
https://www.elastic.co/logstash
https://www.elastic.co/elasticsearch
https://www.elastic.co/kibana
https://www.elastic.co/logstash

structlog Documentation, Release 22.2.0

Graylog

Graylog goes one step further. It not only supports everything those above do (and then some); you can also directly log
JSON entries towards it – optionally even through an AMQP server (like RabbitMQ) for better reliability. Additionally,
Graylog’s Extended Log Format (GELF) allows for structured data which makes it an obvious choice to use together
with structlog.

6.3 Performance

Here are a few hints how to get the best performance out of structlog in production:

• Use structlog’s native BoundLogger (created using structlog.make_filtering_bound_logger()) if you
want to use level-based filtering. return None is hard to beat.

• Avoid (frequently) calling log methods on loggers you get back from structlog.get_logger() or
structlog.wrap_logger(). Since those functions are usually called in module scope and thus before you
are able to configure them, they return a proxy object that assembles the correct logger on demand.

Create a local logger if you expect to log frequently without binding:

logger = structlog.get_logger()
def f():

log = logger.bind()
for i in range(1000000000):

log.info("iterated", i=i)

Since global scope lookups are expensive in Python, it’s generally a good idea to copy frequently-used symbols
into local scope.

• Set the cache_logger_on_first_use option to True so the aforementioned on-demand loggers will be assembled
only once and cached for future uses:

configure(cache_logger_on_first_use=True)

This has two drawbacks:

1. Later calls of configure() don’t have any effect on already cached loggers – that shouldn’t matter outside
of testing though.

2. The resulting bound logger is not pickleable. Therefore, you can’t set this option if you e.g. plan on passing
loggers around using multiprocessing.

• Avoid sending your log entries through the standard library if you can: its dynamic nature and flexibility make
it a major bottleneck. Instead use structlog.WriteLoggerFactory or – if your serializer returns bytes (e.g.
orjson) – structlog.BytesLoggerFactory.

You can still configure logging for packages that you don’t control, but avoid it for your own log entries.

• Use a faster JSON serializer than the standard library. Possible alternatives are among others are orjson or
RapidJSON .

• Be conscious about whether and how you use structlog’s asyncio support. While it’s true that moving log pro-
cessing into separate threads prevents your application from hanging, it also comes with a performance cost.

Decide judiciously whether or not you’re willing to pay that price. If your processor chain has a good and
predictable performance without external dependencies (as it should), it might not be worth it.

48 Chapter 6. structlog in Practice

https://www.graylog.org/
https://www.rabbitmq.com/
https://docs.graylog.org/docs/gelf
https://github.com/ijl/orjson
https://github.com/ijl/orjson
https://pypi.org/project/python-rapidjson/

structlog Documentation, Release 22.2.0

6.3.1 Example

Here’s an example for a production-ready non-asyncio structlog configuration that’s as fast as it gets:

import logging
import structlog

structlog.configure(
cache_logger_on_first_use=True,
wrapper_class=structlog.make_filtering_bound_logger(logging.INFO),
processors=[

structlog.contextvars.merge_contextvars,
structlog.processors.add_log_level,
structlog.processors.format_exc_info,
structlog.processors.TimeStamper(fmt="iso", utc=True),
structlog.processors.JSONRenderer(serializer=orjson.dumps),

],
logger_factory=structlog.BytesLoggerFactory(),

)

It has the following properties:

• Caches all loggers on first use.

• Filters all log entries below the info log level very efficiently. The debug method literally consists of return
None.

• Supports Context Variables (thread-local contexts).

• Adds the log level name.

• Renders exceptions.

• Adds an ISO 8601 timestamp under the timestamp key in the UTC timezone.

• Renders the log entries as JSON using orjson which is faster than plain logging in logging.

• Uses structlog.BytesLoggerFactory because orjson returns bytes. That saves encoding ping-pong.

Therefore a log entry might look like this:

{"event":"hello","timestamp":"2020-11-17T09:54:11.900066Z"}

If you need standard library support for external projects, you can either just use a JSON formatter like python-json-
logger, or pipe them through structlog as documented in Standard Library Logging.

6.3. Performance 49

https://en.wikipedia.org/wiki/ISO_8601
https://github.com/ijl/orjson
https://pypi.org/project/python-json-logger/
https://pypi.org/project/python-json-logger/

structlog Documentation, Release 22.2.0

50 Chapter 6. structlog in Practice

CHAPTER

SEVEN

DEPRECATED FEATURES

7.1 Legacy Thread-local Context

Attention: The structlog.threadlocal module is deprecated as of structlog 22.1.0 in favor of Context Vari-
ables.

The standard library contextvarsmodule provides a more feature-rich superset of the thread-local APIs and works
with thread-local data, async code, and greenlets.

Therefore, as of 22.1.0, the structlog.threadlocal module is frozen and will be removed after May 2023.

7.1.1 The merge_threadlocal Processor

structlog provides a simple set of functions that allow explicitly binding certain fields to a global (thread-local) context
and merge them later using a processor into the event dict.

The general flow of using these functions is:

• Use structlog.configure()with structlog.threadlocal.merge_threadlocal() as your first proces-
sor.

• Call structlog.threadlocal.clear_threadlocal() at the beginning of your request handler (or whenever
you want to reset the thread-local context).

• Call structlog.threadlocal.bind_threadlocal() as an alternative to your bound logger’s bind() when
you want to bind a particular variable to the thread-local context.

• Use structlog as normal. Loggers act as they always do, but the structlog.threadlocal.
merge_threadlocal() processor ensures that any thread-local binds get included in all of your log messages.

• If you want to access the thread-local storage, you use structlog.threadlocal.get_threadlocal() and
structlog.threadlocal.get_merged_threadlocal().

These functions map 1:1 to the Context Variables APIs, so please use those instead:

• structlog.contextvars.merge_contextvars()

• structlog.contextvars.clear_contextvars()

• structlog.contextvars.bind_contextvars()

• structlog.contextvars.get_contextvars()

• structlog.contextvars.get_merged_contextvars()

51

https://docs.python.org/3/library/contextvars.html#module-contextvars

structlog Documentation, Release 22.2.0

7.1.2 Thread-local Contexts

structlog also provides thread-local context storage in a form that you may already know from Flask and that makes
the entire context global to your thread or greenlet.

This makes its behavior more difficult to reason about which is why we generally recommend to use the
merge_contextvars() route. Therefore, there are currently no plans to re-implement this behavior on top of context
variables.

Wrapped Dicts

In order to make your context thread-local, structlog ships with a function that can wrap any dict-like class to make it
usable for thread-local storage: structlog.threadlocal.wrap_dict().

Within one thread, every instance of the returned class will have a common instance of the wrapped dict-like class:

>>> from structlog.threadlocal import wrap_dict
>>> WrappedDictClass = wrap_dict(dict)
>>> d1 = WrappedDictClass({"a": 1})
>>> d2 = WrappedDictClass({"b": 2})
>>> d3 = WrappedDictClass()
>>> d3["c"] = 3
>>> d1 is d3
False
>>> d1 == d2 == d3 == WrappedDictClass()
True
>>> d3
<WrappedDict-...({'a': 1, 'b': 2, 'c': 3})>

To enable thread-local context use the generated class as the context class:

configure(context_class=WrappedDictClass)

Note: Creation of a new BoundLogger initializes the logger’s context as context_class(initial_values), and
then adds any values passed via .bind(). As all instances of a wrapped dict-like class share the same data, in the case
above, the new logger’s context will contain all previously bound values in addition to the new ones.

structlog.threadlocal.wrap_dict returns always a completely new wrapped class:

>>> from structlog.threadlocal import wrap_dict
>>> WrappedDictClass = wrap_dict(dict)
>>> AnotherWrappedDictClass = wrap_dict(dict)
>>> WrappedDictClass() != AnotherWrappedDictClass()
True
>>> WrappedDictClass.__name__
WrappedDict-41e8382d-bee5-430e-ad7d-133c844695cc
>>> AnotherWrappedDictClass.__name__
WrappedDict-e0fc330e-e5eb-42ee-bcec-ffd7bd09ad09

In order to be able to bind values temporarily to a logger, structlog.threadlocal comes with a context manager:
structlog.threadlocal.tmp_bind():

52 Chapter 7. Deprecated Features

https://flask.palletsprojects.com/en/latest/design/#thread-locals
https://docs.python.org/2/library/stdtypes.html#context-manager-types

structlog Documentation, Release 22.2.0

>>> log.bind(x=42)
<BoundLoggerFilteringAtNotset(context=<WrappedDict-...({'x': 42})>, ...)>
>>> log.msg("event!")
x=42 event='event!'
>>> with tmp_bind(log, x=23, y="foo") as tmp_log:
... tmp_log.msg("another event!")
x=23 y='foo' event='another event!'
>>> log.msg("one last event!")
x=42 event='one last event!'

The state before the with statement is saved and restored once it’s left.

If you want to detach a logger from thread-local data, there’s structlog.threadlocal.as_immutable().

Downsides & Caveats

The convenience of having a thread-local context comes at a price though:

Warning:

• If you can’t rule out that your application re-uses threads, you must remember to initialize your thread-local
context at the start of each request using new() (instead of bind()). Otherwise you may start a new request
with the context still filled with data from the request before.

• Don’t stop assigning the results of your bind()s and new()s!

Do:
log = log.new(y=23)
log = log.bind(x=42)

Don’t:
log.new(y=23)
log.bind(x=42)

Although the state is saved in a global data structure, you still need the global wrapped logger produce a real
bound logger. Otherwise each log call will result in an instantiation of a temporary BoundLogger.

See configuration for more details.

• It doesn’t play well with os.fork and thus multiprocessing (unless configured to use the spawn start
method).

7.1.3 API

structlog.threadlocal.bind_threadlocal(**kw)
Put keys and values into the thread-local context.

Use this instead of bind() when you want some context to be global (thread-local).

New in version 19.2.0.

Deprecated since version 22.1.0.

7.1. Legacy Thread-local Context 53

https://github.com/hynek/structlog/issues/296

structlog Documentation, Release 22.2.0

structlog.threadlocal.unbind_threadlocal(*keys)
Tries to remove bound keys from threadlocal logging context if present.

New in version 20.1.0.

Deprecated since version 22.1.0.

structlog.threadlocal.bound_threadlocal(**kw)
Bind kw to the current thread-local context. Unbind or restore kw afterwards. Do not affect other keys.

Can be used as a context manager or decorator.

New in version 21.4.0.

Deprecated since version 22.1.0.

structlog.threadlocal.get_threadlocal()

Return a copy of the current thread-local context.

New in version 21.2.0.

Deprecated since version 22.1.0.

structlog.threadlocal.get_merged_threadlocal(bound_logger)
Return a copy of the current thread-local context merged with the context from bound_logger.

New in version 21.2.0.

Deprecated since version 22.1.0.

structlog.threadlocal.merge_threadlocal(logger, method_name, event_dict)
A processor that merges in a global (thread-local) context.

Use this as your first processor in structlog.configure() to ensure thread-local context is included in all log
calls.

New in version 19.2.0.

Changed in version 20.1.0: This function used to be called merge_threadlocal_context and that name is
still kept around for backward compatibility.

Deprecated since version 22.1.0.

structlog.threadlocal.clear_threadlocal()

Clear the thread-local context.

The typical use-case for this function is to invoke it early in request-handling code.

New in version 19.2.0.

Deprecated since version 22.1.0.

54 Chapter 7. Deprecated Features

structlog Documentation, Release 22.2.0

structlog.threadlocal.wrap_dict(dict_class)
Wrap a dict-like class and return the resulting class.

The wrapped class and used to keep global in the current thread.

Parameters
dict_class (type[Union[Dict[str, Any], Dict[Any, Any]]]) – Class used for keep-
ing context.

Deprecated since version 22.1.0.

structlog.threadlocal.tmp_bind(logger, **tmp_values)
Bind tmp_values to logger & memorize current state. Rewind afterwards.

Only works with structlog.threadlocal.wrap_dict-based contexts. Use bound_threadlocal() for new
code.

Deprecated since version 22.1.0.

structlog.threadlocal.as_immutable(logger)
Extract the context from a thread local logger into an immutable logger.

Parameters
logger (structlog.typing.BindableLogger) – A logger with possibly thread local state.

Returns
BoundLogger with an immutable context.

Return type
TLLogger

Deprecated since version 22.1.0.

7.1. Legacy Thread-local Context 55

https://docs.python.org/3/library/functions.html#type
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/typing.html#typing.Any

structlog Documentation, Release 22.2.0

56 Chapter 7. Deprecated Features

CHAPTER

EIGHT

API REFERENCE

8.1 API Reference

Note: The examples here use a very simplified configuration using the minimalist structlog.processors.
KeyValueRenderer for brevity and to enable doctests. The output is going to be different (nicer!) with the default
configuration.

8.1.1 structlog Package

structlog.get_logger(*args, **initial_values)
Convenience function that returns a logger according to configuration.

>>> from structlog import get_logger
>>> log = get_logger(y=23)
>>> log.info("hello", x=42)
y=23 x=42 event='hello'

Parameters

• args (Any) – Optional positional arguments that are passed unmodified to the logger factory.
Therefore it depends on the factory what they mean.

• initial_values (Any) – Values that are used to pre-populate your contexts.

Returns
A proxy that creates a correctly configured bound logger when necessary. The type of that bound
logger depends on your configuration and is structlog.BoundLogger by default.

Return type
Any

See Configuration for details.

If you prefer CamelCase, there’s an alias for your reading pleasure: structlog.getLogger.

New in version 0.4.0: args

structlog.getLogger(*args, **initial_values)
CamelCase alias for structlog.get_logger.

This function is supposed to be in every source file – we don’t want it to stick out like a sore thumb in frameworks
like Twisted or Zope.

57

https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/typing.html#typing.Any

structlog Documentation, Release 22.2.0

structlog.wrap_logger(logger, processors=None, wrapper_class=None, context_class=None,
cache_logger_on_first_use=None, logger_factory_args=None, **initial_values)

Create a new bound logger for an arbitrary logger.

Default values for processors, wrapper_class, and context_class can be set using configure.

If you set an attribute here, configure calls have no effect for the respective attribute.

In other words: selective overwriting of the defaults while keeping some is possible.

Parameters

• initial_values (Any) – Values that are used to pre-populate your contexts.

• logger_factory_args (Optional[Iterable[Any]]) – Values that are passed unmodi-
fied as *logger_factory_args to the logger factory if not None.

Returns
A proxy that creates a correctly configured bound logger when necessary.

Return type
Any

See configure for the meaning of the rest of the arguments.

New in version 0.4.0: logger_factory_args

structlog.configure(processors=None, wrapper_class=None, context_class=None, logger_factory=None,
cache_logger_on_first_use=None)

Configures the global defaults.

They are used if wrap_logger or get_logger are called without arguments.

Can be called several times, keeping an argument at None leaves it unchanged from the current setting.

After calling for the first time, is_configured starts returning True.

Use reset_defaults to undo your changes.

Parameters

• processors (Optional[Iterable[Callable[[Any, str, MutableMapping[str,
Any]], Union[Mapping[str, Any], str, bytes, bytearray, Tuple[Any,
...]]]]]) – The processor chain. See Processors for details.

• wrapper_class (Optional[type[structlog.typing.BindableLogger]]) – Class to
use for wrapping loggers instead of structlog.BoundLogger. See Standard Library Log-
ging, Twisted, and Custom Wrappers.

• context_class (Optional[type[Union[Dict[str, Any], Dict[Any, Any]]]])
– Class to be used for internal context keeping. The default is a dict and since dictionaries
are ordered as of Python 3.6, there’s few reasons to change this option.

• logger_factory (Optional[Callable[[...], Any]]) – Factory to be called to create
a new logger that shall be wrapped.

• cache_logger_on_first_use (Optional[bool]) – wrap_logger doesn’t return an ac-
tual wrapped logger but a proxy that assembles one when it’s first used. If this option is set
to True, this assembled logger is cached. See Performance.

New in version 0.3.0: cache_logger_on_first_use

58 Chapter 8. API Reference

https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.Iterable
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#True
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.Iterable
https://docs.python.org/3/library/typing.html#typing.Callable
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.MutableMapping
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/typing.html#typing.Mapping
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/stdtypes.html#bytearray
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/functions.html#type
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/functions.html#type
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.Callable
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/constants.html#True

structlog Documentation, Release 22.2.0

structlog.configure_once(processors=None, wrapper_class=None, context_class=None,
logger_factory=None, cache_logger_on_first_use=None)

Configures if structlog isn’t configured yet.

It does not matter whether it was configured using configure or configure_once before.

Raises a RuntimeWarning if repeated configuration is attempted.

structlog.reset_defaults()

Resets global default values to builtin defaults.

is_configured starts returning False afterwards.

structlog.is_configured()

Return whether structlog has been configured.

If False, structlog is running with builtin defaults.

structlog.get_config()

Get a dictionary with the current configuration.

Note: Changes to the returned dictionary do not affect structlog.

class structlog.BoundLogger(logger, processors, context)
A generic BoundLogger that can wrap anything.

Every unknown method will be passed to the wrapped logger. If that’s too much magic for you, try structlog.
stdlib.BoundLogger or structlog.twisted.BoundLogger which also take advantage of knowing the
wrapped class which generally results in better performance.

Not intended to be instantiated by yourself. See wrap_logger() and get_logger().

bind(**new_values)
Return a new logger with new_values added to the existing ones.

new(**new_values)
Clear context and binds initial_values using bind .

Only necessary with dict implementations that keep global state like those wrapped by structlog.
threadlocal.wrap_dict when threads are re-used.

unbind(*keys)
Return a new logger with keys removed from the context.

Raises
KeyError – If the key is not part of the context.

8.1. API Reference 59

https://docs.python.org/3/library/exceptions.html#RuntimeWarning
https://docs.python.org/3/library/constants.html#False
https://docs.python.org/3/library/constants.html#False
https://docs.python.org/3/library/exceptions.html#KeyError

structlog Documentation, Release 22.2.0

structlog.make_filtering_bound_logger(min_level)
Create a new FilteringBoundLogger that only logs min_level or higher.

The logger is optimized such that log levels below min_level only consist of a return None.

All familiar log methods are present, with async variants of each that are prefixed by an a. Therefore, the async
version of log.info("hello") is await log.ainfo("hello").

Additionally it has a log(self, level: int, **kw: Any) method to mirror logging.Logger.log and
structlog.stdlib.BoundLogger.log.

Compared to using structlog’s standard library integration and the structlog.stdlib.filter_by_level
processor:

• It’s faster because once the logger is built at program start; it’s a static class.

• For the same reason you can’t change the log level once configured. Use the dynamic approach of Standard
Library Logging instead, if you need this feature.

• You can have (much) more fine-grained filtering by writing a simple processor.

Parameters
min_level (int) – The log level as an integer. You can use the constants from logging like
logging.INFO or pass the values directly. See this table from the logging docs for possible
values.

New in version 20.2.0.

Changed in version 21.1.0: The returned loggers are now pickleable.

New in version 20.1.0: The log() method.

New in version 22.2.0: Async variants alog(), adebug(), ainfo(), and so forth.

structlog.get_context(bound_logger)
Return bound_logger’s context.

The type of bound_logger and the type returned depend on your configuration.

Parameters
bound_logger (BindableLogger) – The bound logger whose context you want.

Returns
The actual context from bound_logger. It is not copied first.

Return type
Union[Dict[str, Any], Dict[Any, Any]]

New in version 20.2.

class structlog.PrintLogger(file=None)
Print events into a file.

Parameters
file (TextIO | None) – File to print to. (default: sys.stdout)

>>> from structlog import PrintLogger
>>> PrintLogger().info("hello")
hello

Useful if you follow current logging best practices.

Also very useful for testing and examples since logging is finicky in doctests.

60 Chapter 8. API Reference

https://docs.python.org/3/library/logging.html#logging.Logger.log
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/logging.html#module-logging
https://docs.python.org/3/library/logging.html#levels
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/sys.html#sys.stdout
https://docs.python.org/3/library/logging.html#module-logging

structlog Documentation, Release 22.2.0

Changed in version 22.1: The implementation has been switched to use print for better monkeypatchability.

critical(message)
Print message.

debug(message)
Print message.

err(message)
Print message.

error(message)
Print message.

failure(message)
Print message.

fatal(message)
Print message.

info(message)
Print message.

log(message)
Print message.

msg(message)
Print message.

warning(message)
Print message.

class structlog.PrintLoggerFactory(file=None)
Produce PrintLoggers.

To be used with structlog.configure‘s logger_factory.

Parameters
file (TextIO | None) – File to print to. (default: sys.stdout)

Positional arguments are silently ignored.

New in version 0.4.0.

8.1. API Reference 61

https://docs.python.org/3/library/functions.html#print
https://docs.python.org/3/library/sys.html#sys.stdout

structlog Documentation, Release 22.2.0

class structlog.WriteLogger(file=None)
Write events into a file.

Parameters
file (TextIO | None) – File to print to. (default: sys.stdout)

>>> from structlog import WriteLogger
>>> WriteLogger().info("hello")
hello

Useful if you follow current logging best practices.

Also very useful for testing and examples since logging is finicky in doctests.

A little faster and a little less versatile than structlog.PrintLogger.

New in version 22.1.

critical(message)
Write and flush message.

debug(message)
Write and flush message.

err(message)
Write and flush message.

error(message)
Write and flush message.

failure(message)
Write and flush message.

fatal(message)
Write and flush message.

info(message)
Write and flush message.

log(message)
Write and flush message.

msg(message)
Write and flush message.

62 Chapter 8. API Reference

https://docs.python.org/3/library/sys.html#sys.stdout
https://docs.python.org/3/library/logging.html#module-logging

structlog Documentation, Release 22.2.0

warning(message)
Write and flush message.

class structlog.WriteLoggerFactory(file=None)
Produce WriteLoggers.

To be used with structlog.configure‘s logger_factory.

Parameters
file (TextIO | None) – File to print to. (default: sys.stdout)

Positional arguments are silently ignored.

New in version 22.1.

class structlog.BytesLogger(file=None)
Writes bytes into a file.

Parameters
file (BinaryIO | None) – File to print to. (default: sys.stdout.buffer)

Useful if you follow current logging best practices together with a formatter that returns bytes (e.g. orjson).

New in version 20.2.0.

critical(message)
Write message.

debug(message)
Write message.

err(message)
Write message.

error(message)
Write message.

failure(message)
Write message.

fatal(message)
Write message.

info(message)
Write message.

8.1. API Reference 63

https://docs.python.org/3/library/sys.html#sys.stdout
https://docs.python.org/3/library/sys.html#sys.stdout
https://github.com/ijl/orjson

structlog Documentation, Release 22.2.0

log(message)
Write message.

msg(message)
Write message.

warning(message)
Write message.

class structlog.BytesLoggerFactory(file=None)
Produce BytesLoggers.

To be used with structlog.configure‘s logger_factory.

Parameters
file (BinaryIO | None) – File to print to. (default: sys.stdout.buffer)

Positional arguments are silently ignored.

New in version 20.2.0.

exception structlog.DropEvent

If raised by an processor, the event gets silently dropped.

Derives from BaseException because it’s technically not an error.

class structlog.BoundLoggerBase(logger, processors, context)
Immutable context carrier.

Doesn’t do any actual logging; examples for useful subclasses are:

• the generic BoundLogger that can wrap anything,

• structlog.stdlib.BoundLogger.

• structlog.twisted.BoundLogger,

See also Custom Wrappers.

_logger: Any

Wrapped logger.

Note: Despite underscore available read-only to custom wrapper classes.

See also Custom Wrappers.

_process_event(method_name, event, event_kw)
Combines creates an event_dict and runs the chain.

Call it to combine your event and context into an event_dict and process using the processor chain.

Parameters

• method_name (str) – The name of the logger method. Is passed into the processors.

• event (str | None) – The event – usually the first positional argument to a logger.

64 Chapter 8. API Reference

https://docs.python.org/3/library/sys.html#sys.stdout
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

structlog Documentation, Release 22.2.0

• event_kw (dict[str, Any]) – Additional event keywords. For example if someone calls
log.info("foo", bar=42), event would to be "foo" and event_kw {"bar": 42}.

Raises
structlog.DropEvent if log entry should be dropped.

Raises
ValueError if the final processor doesn’t return a str, bytes, bytearray, tuple, or a dict.

Returns
tuple of (*args, **kw)

Return type
tuple[Sequence[Any], Mapping[str, Any]]

Note: Despite underscore available to custom wrapper classes.

See also Custom Wrappers.

Changed in version 14.0.0: Allow final processor to return a dict.

Changed in version 20.2.0: Allow final processor to return bytes.

Changed in version 21.2.0: Allow final processor to return a bytearray.

_proxy_to_logger(method_name, event=None, **event_kw)
Run processor chain on event & call method_name on wrapped logger.

DRY convenience method that runs _process_event(), takes care of handling structlog.DropEvent,
and finally calls method_name on _logger with the result.

Parameters

• method_name (str) – The name of the method that’s going to get called. Technically it
should be identical to the method the user called because it also get passed into processors.

• event (Optional[str]) – The event – usually the first positional argument to a logger.

• event_kw (Any) – Additional event keywords. For example if someone calls log.
info("foo", bar=42), event would to be "foo" and event_kw {"bar": 42}.

Note: Despite underscore available to custom wrapper classes.

See also Custom Wrappers.

bind(**new_values)
Return a new logger with new_values added to the existing ones.

new(**new_values)
Clear context and binds initial_values using bind .

Only necessary with dict implementations that keep global state like those wrapped by structlog.
threadlocal.wrap_dict when threads are re-used.

8.1. API Reference 65

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/typing.html#typing.Sequence
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/typing.html#typing.Mapping
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/stdtypes.html#bytearray
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Any

structlog Documentation, Release 22.2.0

try_unbind(*keys)
Like unbind(), but best effort: missing keys are ignored.

New in version 18.2.0.

unbind(*keys)
Return a new logger with keys removed from the context.

Raises
KeyError – If the key is not part of the context.

8.1.2 structlog.dev Module

Helpers that make development with structlog more pleasant.

See also the narrative documentation in Development Tools.

class structlog.dev.ConsoleRenderer(pad_event=30, colors=True, force_colors=False,
repr_native_str=False, level_styles=None,
exception_formatter=<function plain_traceback>, sort_keys=True,
event_key='event')

Render event_dict nicely aligned, possibly in colors, and ordered.

If event_dict contains a true-ish exc_info key, it will be rendered after the log line. If Rich or better-
exceptions are present, in colors and with extra context.

Parameters

• pad_event (int) – Pad the event to this many characters.

• colors (bool) – Use colors for a nicer output. True by default. On Windows only if
Colorama is installed.

• force_colors (bool) – Force colors even for non-tty destinations. Use this option if your
logs are stored in a file that is meant to be streamed to the console. Only meaningful on
Windows.

• repr_native_str (bool) – When True, repr is also applied to native strings (i.e. unicode
on Python 3 and bytes on Python 2). Setting this to False is useful if you want to have
human-readable non-ASCII output on Python 2. The event key is never repr -ed.

• level_styles (Styles | None) – When present, use these styles for colors. This must be
a dict from level names (strings) to Colorama styles. The default can be obtained by calling
ConsoleRenderer.get_default_level_styles

• exception_formatter (ExceptionRenderer) – A callable to render exc_infos. If rich
or better-exceptions are installed, they are used for pretty-printing by default (rich taking
precedence). You can also manually set it to plain_traceback , better_traceback ,
rich_traceback , or implement your own.

• sort_keys (bool) – Whether to sort keys when formatting. True by default.

• event_key (str) – The key to look for the main log message. Needed when you rename it
e.g. using structlog.processors.EventRenamer.

Requires the Colorama package if colors is True on Windows.

New in version 16.0.

New in version 16.1: colors

66 Chapter 8. API Reference

https://docs.python.org/3/library/exceptions.html#KeyError
https://docs.python.org/3/library/development.html#development
https://pypi.org/project/rich/
https://pypi.org/project/better-exceptions/
https://pypi.org/project/better-exceptions/
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/constants.html#True
https://pypi.org/project/colorama/
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/constants.html#True
https://docs.python.org/3/library/functions.html#repr
https://docs.python.org/3/library/constants.html#False
https://docs.python.org/3/library/functions.html#repr
https://pypi.org/project/rich/
https://pypi.org/project/better-exceptions/
https://pypi.org/project/rich/
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/constants.html#True
https://docs.python.org/3/library/stdtypes.html#str
https://pypi.org/project/colorama/
https://docs.python.org/3/library/constants.html#True

structlog Documentation, Release 22.2.0

New in version 17.1: repr_native_str

New in version 18.1: force_colors

New in version 18.1: level_styles

Changed in version 19.2: Colorama now initializes lazily to avoid unwanted initializations as ConsoleRenderer
is used by default.

Changed in version 19.2: Can be pickled now.

Changed in version 20.1: Colorama does not initialize lazily on Windows anymore because it breaks rendering.

Changed in version 21.1: It is additionally possible to set the logger name using the logger_name key in the
event_dict.

New in version 21.2: exception_formatter

Changed in version 21.2: ConsoleRenderer now handles the exc_info event dict key itself. Do not use the
structlog.processors.format_exc_info processor together with ConsoleRenderer anymore! It will
keep working, but you can’t have customize exception formatting and a warning will be raised if you ask for it.

Changed in version 21.2: The colors keyword now defaults to True on non-Windows systems, and either True or
False in Windows depending on whether Colorama is installed.

New in version 21.3.0: sort_keys

New in version 22.1: event_key

static get_default_level_styles(colors=True)
Get the default styles for log levels

This is intended to be used with ConsoleRenderer’s level_styles parameter. For example, if you are
adding custom levels in your home-grown add_log_level() you could do:

my_styles = ConsoleRenderer.get_default_level_styles()
my_styles["EVERYTHING_IS_ON_FIRE"] = my_styles["critical"]
renderer = ConsoleRenderer(level_styles=my_styles)

Parameters
colors (bool) – Whether to use colorful styles. This must match the colors parameter to
ConsoleRenderer. Default: True.

structlog.dev.plain_traceback(sio, exc_info)
“Pretty”-print exc_info to sio using our own plain formatter.

To be passed into ConsoleRenderer’s exception_formatter argument.

Used by default if neither Rich not better-exceptions are present.

New in version 21.2.

structlog.dev.rich_traceback(sio, exc_info)
Pretty-print exc_info to sio using the Rich package.

To be passed into ConsoleRenderer’s exception_formatter argument.

Used by default if Rich is installed.

New in version 21.2.

8.1. API Reference 67

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/constants.html#True

structlog Documentation, Release 22.2.0

structlog.dev.better_traceback(sio, exc_info)
Pretty-print exc_info to sio using the better-exceptions package.

To be passed into ConsoleRenderer’s exception_formatter argument.

Used by default if better-exceptions is installed and Rich is absent.

New in version 21.2.

structlog.dev.set_exc_info(logger, method_name, event_dict)
Set event_dict["exc_info"] = True if method_name is "exception".

Do nothing if the name is different or exc_info is already set.

8.1.3 structlog.testing Module

Helpers to test your application’s logging behavior.

New in version 20.1.0.

See Testing.

structlog.testing.capture_logs()

Context manager that appends all logging statements to its yielded list while it is active. Disables all configured
processors for the duration of the context manager.

Attention: this is not thread-safe!

New in version 20.1.0.

class structlog.testing.LogCapture

Class for capturing log messages in its entries list. Generally you should use structlog.testing.
capture_logs, but you can use this class if you want to capture logs with other patterns.

Variables
entries (List[structlog.typing.EventDict]) – The captured log entries.

New in version 20.1.0.

class structlog.testing.CapturingLogger

Store the method calls that it’s been called with.

This is nicer than ReturnLogger for unit tests because the bound logger doesn’t have to cooperate.

Any method name is supported.

New in version 20.2.0.

>>> from pprint import pprint
>>> cl = structlog.testing.CapturingLogger()
>>> cl.info("hello")
>>> cl.info("hello", when="again")
>>> pprint(cl.calls)
[CapturedCall(method_name='info', args=('hello',), kwargs={}),
CapturedCall(method_name='info', args=('hello',), kwargs={'when': 'again'})]

68 Chapter 8. API Reference

structlog Documentation, Release 22.2.0

class structlog.testing.CapturingLoggerFactory

Produce and cache CapturingLoggers.

Each factory produces and re-uses only one logger.

You can access it via the logger attribute.

To be used with structlog.configure‘s logger_factory.

Positional arguments are silently ignored.

New in version 20.2.0.

class structlog.testing.CapturedCall(method_name, args, kwargs)
A call as captured by CapturingLogger.

Can also be unpacked like a tuple.

Parameters

• method_name (str) – The method name that got called.

• args (tuple[Any, ...]) – A tuple of the positional arguments.

• kwargs (dict[str, Any]) – A dict of the keyword arguments.

New in version 20.2.0.

class structlog.testing.ReturnLogger

Return the arguments that it’s called with.

>>> from structlog import ReturnLogger
>>> ReturnLogger().info("hello")
'hello'
>>> ReturnLogger().info("hello", when="again")
(('hello',), {'when': 'again'})

Changed in version 0.3.0: Allow for arbitrary arguments and keyword arguments to be passed in.

critical(*args, **kw)
Return tuple of args, kw or just args[0] if only one arg passed

debug(*args, **kw)
Return tuple of args, kw or just args[0] if only one arg passed

err(*args, **kw)
Return tuple of args, kw or just args[0] if only one arg passed

error(*args, **kw)
Return tuple of args, kw or just args[0] if only one arg passed

8.1. API Reference 69

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Any

structlog Documentation, Release 22.2.0

failure(*args, **kw)
Return tuple of args, kw or just args[0] if only one arg passed

fatal(*args, **kw)
Return tuple of args, kw or just args[0] if only one arg passed

info(*args, **kw)
Return tuple of args, kw or just args[0] if only one arg passed

log(*args, **kw)
Return tuple of args, kw or just args[0] if only one arg passed

msg(*args, **kw)
Return tuple of args, kw or just args[0] if only one arg passed

warning(*args, **kw)
Return tuple of args, kw or just args[0] if only one arg passed

class structlog.testing.ReturnLoggerFactory

Produce and cache ReturnLoggers.

To be used with structlog.configure‘s logger_factory.

Positional arguments are silently ignored.

New in version 0.4.0.

8.1.4 structlog.contextvars Module

Primitives to deal with a concurrency supporting context, as introduced in Python 3.7 as contextvars.

New in version 20.1.0.

Changed in version 21.1.0: Reimplemented without using a single dict as context carrier for improved isolation. Every
key-value pair is a separate contextvars.ContextVar now.

See Context Variables.

structlog.contextvars.bind_contextvars(**kw)
Put keys and values into the context-local context.

Use this instead of bind() when you want some context to be global (context-local).

Return the mapping of contextvars.Tokens resulting from setting the backing ContextVars. Suitable for
passing to reset_contextvars().

New in version 20.1.0.

Changed in version 21.1.0: Return the contextvars.Token mapping rather than None. See also the toplevel
note.

70 Chapter 8. API Reference

https://docs.python.org/3/library/contextvars.html#module-contextvars
https://docs.python.org/3/library/contextvars.html#contextvars.ContextVar
https://docs.python.org/3/library/contextvars.html#contextvars.Token
https://docs.python.org/3/library/contextvars.html#contextvars.ContextVar
https://docs.python.org/3/library/contextvars.html#contextvars.Token

structlog Documentation, Release 22.2.0

structlog.contextvars.bound_contextvars(**kw)
Bind kw to the current context-local context. Unbind or restore kw afterwards. Do not affect other keys.

Can be used as a context manager or decorator.

New in version 21.4.0.

structlog.contextvars.get_contextvars()

Return a copy of the structlog-specific context-local context.

New in version 21.2.0.

structlog.contextvars.get_merged_contextvars(bound_logger)
Return a copy of the current context-local context merged with the context from bound_logger.

New in version 21.2.0.

structlog.contextvars.merge_contextvars(logger, method_name, event_dict)
A processor that merges in a global (context-local) context.

Use this as your first processor in structlog.configure() to ensure context-local context is included in all
log calls.

New in version 20.1.0.

Changed in version 21.1.0: See toplevel note.

structlog.contextvars.clear_contextvars()

Clear the context-local context.

The typical use-case for this function is to invoke it early in request- handling code.

New in version 20.1.0.

Changed in version 21.1.0: See toplevel note.

structlog.contextvars.unbind_contextvars(*keys)
Remove keys from the context-local context if they are present.

Use this instead of unbind() when you want to remove keys from a global (context-local) context.

New in version 20.1.0.

Changed in version 21.1.0: See toplevel note.

structlog.contextvars.reset_contextvars(**kw)
Reset contextvars corresponding to the given Tokens.

New in version 21.1.0.

8.1. API Reference 71

structlog Documentation, Release 22.2.0

8.1.5 structlog.threadlocal Module

Deprecated primitives to keep context global but thread (and greenlet) local.

See Legacy Thread-local Context, but please use Context Variables instead.

Deprecated since version 22.1.0.

8.1.6 structlog.processors Module

Processors useful regardless of the logging framework.

class structlog.processors.JSONRenderer(serializer=<function dumps>, **dumps_kw)
Render the event_dict using serializer(event_dict, **dumps_kw).

Parameters

• dumps_kw (Any) – Are passed unmodified to serializer. If default is passed, it will disable
support for __structlog__-based serialization.

• serializer (Callable[..., str | bytes]) – A json.dumps()-compatible callable
that will be used to format the string. This can be used to use alternative JSON encoders like
orjson or RapidJSON (default: json.dumps()).

New in version 0.2.0: Support for __structlog__ serialization method.

New in version 15.4.0: serializer parameter.

New in version 18.2.0: Serializer’s default parameter can be overwritten now.

>>> from structlog.processors import JSONRenderer
>>> JSONRenderer(sort_keys=True)(None, None, {"a": 42, "b": [1, 2, 3]})
'{"a": 42, "b": [1, 2, 3]}'

Bound objects are attempted to be serialize using a __structlog__ method. If none is defined, repr() is used:

>>> class C1:
... def __structlog__(self):
... return ["C1!"]
... def __repr__(self):
... return "__structlog__ took precedence"
>>> class C2:
... def __repr__(self):
... return "No __structlog__, so this is used."
>>> from structlog.processors import JSONRenderer
>>> JSONRenderer(sort_keys=True)(None, None, {"c1": C1(), "c2": C2()})
'{"c1": ["C1!"], "c2": "No __structlog__, so this is used."}'

Please note that additionally to strings, you can also return any type the standard library JSON module knows
about – like in this example a list.

If you choose to pass a default parameter as part of json_kw, support for __structlog__ is disabled. This can
be useful when used together with more elegant serialization methods like functools.singledispatch():
Better Python Object Serialization.

Tip: If you use this processor, you may also wish to add structured tracebacks for exceptions. You can do this
by adding the dict_tracebacks to your list of processors:

72 Chapter 8. API Reference

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/json.html#json.dumps
https://pypi.org/project/orjson/
https://pypi.org/project/python-rapidjson/
https://docs.python.org/3/library/json.html#json.dumps
https://docs.python.org/3/library/functools.html#functools.singledispatch
https://hynek.me/articles/serialization/

structlog Documentation, Release 22.2.0

>>> structlog.configure(
... processors=[
... structlog.processors.dict_tracebacks,
... structlog.processors.JSONRenderer(),
...],
...)
>>> log = structlog.get_logger()
>>> var = "spam"
>>> try:
... 1 / 0
... except ZeroDivisionError:
... log.exception("Cannot compute!")
{"event": "Cannot compute!", "exception": [{"exc_type": "ZeroDivisionError", "exc_
→˓value": "division by zero", "syntax_error": null, "is_cause": false, "frames": [{
→˓"filename": "<doctest default[3]>", "lineno": 2, "name": "<module>", "line": "",
→˓"locals": {..., "var": "spam"}}]}]}

class structlog.processors.KeyValueRenderer(sort_keys=False, key_order=None, drop_missing=False,
repr_native_str=True)

Render event_dict as a list of Key=repr(Value) pairs.

Parameters

• sort_keys (bool) – Whether to sort keys when formatting.

• key_order (Sequence[str] | None) – List of keys that should be rendered in this exact
order. Missing keys will be rendered as None, extra keys depending on sort_keys and the dict
class.

• drop_missing (bool) – When True, extra keys in key_order will be dropped rather than
rendered as None.

• repr_native_str (bool) – When True, repr() is also applied to native strings. Setting
this to False is useful if you want to have human-readable non-ASCII output on Python 2.

New in version 0.2.0: key_order

New in version 16.1.0: drop_missing

New in version 17.1.0: repr_native_str

>>> from structlog.processors import KeyValueRenderer
>>> KeyValueRenderer(sort_keys=True)(None, None, {"a": 42, "b": [1, 2, 3]})
'a=42 b=[1, 2, 3]'
>>> KeyValueRenderer(key_order=["b", "a"])(None, None,
... {"a": 42, "b": [1, 2, 3]})
'b=[1, 2, 3] a=42'

class structlog.processors.LogfmtRenderer(sort_keys=False, key_order=None, drop_missing=False,
bool_as_flag=True)

Render event_dict using the logfmt format.

Parameters

• sort_keys (bool) – Whether to sort keys when formatting.

8.1. API Reference 73

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#repr
https://brandur.org/logfmt
https://docs.python.org/3/library/functions.html#bool

structlog Documentation, Release 22.2.0

• key_order (Sequence[str] | None) – List of keys that should be rendered in this exact
order. Missing keys are rendered with empty values, extra keys depending on sort_keys and
the dict class.

• drop_missing (bool) – When True, extra keys in key_order will be dropped rather than
rendered with empty values.

• bool_as_flag (bool) – When True, render {"flag": True} as flag, instead of
flag=true. {"flag": False} is always rendered as flag=false.

Raises
ValueError – If a key contains non printable or space characters.

New in version 21.5.0.

>>> from structlog.processors import LogfmtRenderer
>>> event_dict = {"a": 42, "b": [1, 2, 3], "flag": True}
>>> LogfmtRenderer(sort_keys=True)(None, None, event_dict)
'a=42 b="[1, 2, 3]" flag'
>>> LogfmtRenderer(key_order=["b", "a"], bool_as_flag=False)(None, None, event_dict)
'b="[1, 2, 3]" a=42 flag=true'

class structlog.processors.EventRenamer(to, replace_by=None)
Rename the event key in event dicts.

This is useful if you want to use consistent log message keys across platforms and/or use the event key for
something custom.

Warning: It’s recommended to put this processor right before the renderer, since some processors may rely
on the presence and meaning of the event key.

Parameters

• to (str) – Rename event_dict["event"] to event_dict[to]

• replace_by (str | None) – Rename event_dict[replace_by] to
event_dict["event"]. replace_by missing from event_dict is handled gracefully.

New in version 22.1.

See also the Renaming the event Key recipe.

structlog.processors.add_log_level(logger, method_name, event_dict)
Add the log level to the event dict under the level key.

Since that’s just the log method name, this processor works with non-stdlib logging as well. Therefore it’s
importable both from structlog.processors as well as from structlog.stdlib.

New in version 15.0.0.

Changed in version 20.2.0: Importable from structlog.processors (additionally to structlog.stdlib).

class structlog.processors.UnicodeDecoder(encoding='utf-8', errors='replace')
Decode byte string values in event_dict.

Parameters

• encoding (str) – Encoding to decode from (default: "utf-8").

74 Chapter 8. API Reference

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

structlog Documentation, Release 22.2.0

• errors (str) – How to cope with encoding errors (default: "replace").

Useful if you’re running Python 3 as otherwise b"abc" will be rendered as 'b"abc"'.

Just put it in the processor chain before the renderer.

New in version 15.4.0.

class structlog.processors.UnicodeEncoder(encoding='utf-8', errors='backslashreplace')
Encode unicode values in event_dict.

Parameters

• encoding (str) – Encoding to encode to (default: "utf-8").

• errors (str) – How to cope with encoding errors (default "backslashreplace").

Useful if you’re running Python 2 as otherwise u"abc" will be rendered as 'u"abc"'.

Just put it in the processor chain before the renderer.

class structlog.processors.ExceptionRenderer(exception_formatter=<function _format_exception>)
Replace an exc_info field with an exception field which is rendered by exception_formatter.

The contents of the exception field depends on the return value of the ExceptionTransformer that is used:

• The default produces a formatted string via Python’s built-in traceback formatting.

• The ExceptionDictTransformer a list of stack dicts that can be serialized to JSON.

If event_dict contains the key exc_info, there are three possible behaviors:

1. If the value is a tuple, render it into the key exception.

2. If the value is an Exception render it into the key exception.

3. If the value true but no tuple, obtain exc_info ourselves and render that.

If there is no exc_info key, the event_dict is not touched. This behavior is analogue to the one of the stdlib’s
logging.

Parameters
exception_formatter (ExceptionTransformer) – A callable that is used to format the ex-
ception from the exc_info field.

New in version 22.1.

structlog.processors.format_exc_info(logger, name, event_dict)
Replace an exc_info field with an exception string field using Python’s built-in traceback formatting.

If event_dict contains the key exc_info, there are three possible behaviors:

1. If the value is a tuple, render it into the key exception.

2. If the value is an Exception render it into the key exception.

3. If the value is true but no tuple, obtain exc_info ourselves and render that.

If there is no exc_info key, the event_dict is not touched. This behavior is analogue to the one of the stdlib’s
logging.

>>> from structlog.processors import format_exc_info
>>> try:
... raise ValueError
... except ValueError:

(continues on next page)

8.1. API Reference 75

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

structlog Documentation, Release 22.2.0

(continued from previous page)

... format_exc_info(None, None, {"exc_info": True})
{'exception': 'Traceback (most recent call last):...

structlog.processors.dict_tracebacks(logger, name, event_dict)
Replace an exc_info field with an exception field containing structured tracebacks suitable for, e.g., JSON
output.

It is a shortcut for ExceptionRenderer with a ExceptionDictTransformer.

The treatment of the exc_info key is identical to format_exc_info.

New in version 22.1.

>>> from structlog.processors import dict_tracebacks
>>> try:
... raise ValueError("onoes")
... except ValueError:
... dict_tracebacks(None, None, {"exc_info": True})
{'exception': [{'exc_type': 'ValueError', 'exc_value': 'onoes', ..., 'frames': [{
→˓'filename': ...

class structlog.processors.StackInfoRenderer(additional_ignores=None)
Add stack information with key stack if stack_info is True.

Useful when you want to attach a stack dump to a log entry without involving an exception and works analogously
to the stack_info argument of the Python standard library logging.

Parameters
additional_ignores (list[str] | None) – By default, stack frames coming from structlog
are ignored. With this argument you can add additional names that are ignored, before the stack
starts being rendered. They are matched using startswith(), so they don’t have to match
exactly. The names are used to find the first relevant name, therefore once a frame is found that
doesn’t start with structlog or one of additional_ignores, no filtering is applied to subsequent
frames.

New in version 0.4.0.

New in version 22.1.0: additional_ignores

class structlog.processors.ExceptionPrettyPrinter(file=None, exception_formatter=<function
_format_exception>)

Pretty print exceptions and remove them from the event_dict.

Parameters
file (TextIO | None) – Target file for output (default: sys.stdout).

This processor is mostly for development and testing so you can read exceptions properly formatted.

It behaves like format_exc_info except it removes the exception data from the event dictionary after printing
it.

It’s tolerant to having format_exc_info in front of itself in the processor chain but doesn’t require it. In other
words, it handles both exception as well as exc_info keys.

76 Chapter 8. API Reference

https://docs.python.org/3/library/constants.html#True
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str

structlog Documentation, Release 22.2.0

New in version 0.4.0.

Changed in version 16.0.0: Added support for passing exceptions as exc_info on Python 3.

class structlog.processors.TimeStamper(fmt=None, utc=True, key='timestamp')
Add a timestamp to event_dict.

Parameters

• fmt (str | None) – strftime format string, or "iso" for ISO 8601, or None for a UNIX
timestamp.

• utc (bool) – Whether timestamp should be in UTC or local time.

• key (str) – Target key in event_dict for added timestamps.

Changed in version 19.2: Can be pickled now.

>>> from structlog.processors import TimeStamper
>>> TimeStamper()(None, None, {})
{'timestamp': 1378994017}
>>> TimeStamper(fmt="iso")(None, None, {})
{'timestamp': '2013-09-12T13:54:26.996778Z'}
>>> TimeStamper(fmt="%Y", key="year")(None, None, {})
{'year': '2013'}

class structlog.processors.CallsiteParameter(value)
Callsite parameters that can be added to an event dictionary with the structlog.processors.
CallsiteParameterAdder processor class.

The string values of the members of this enum will be used as the keys for the callsite parameters in the event
dictionary.

New in version 21.5.0.

FILENAME = 'filename'

The basename part of the full path to the python source file of the callsite.

FUNC_NAME = 'func_name'

The name of the function that the callsite was in.

LINENO = 'lineno'

The line number of the callsite.

MODULE = 'module'

The python module the callsite was in. This mimics the module attribute of logging.LogRecord objects
and will be the basename, without extension, of the full path to the python source file of the callsite.

PATHNAME = 'pathname'

The full path to the python source file of the callsite.

PROCESS = 'process'

The ID of the process the callsite was executed in.

PROCESS_NAME = 'process_name'

The name of the process the callsite was executed in.

THREAD = 'thread'

The ID of the thread the callsite was executed in.

8.1. API Reference 77

https://docs.python.org/3/library/stdtypes.html#str
https://en.wikipedia.org/wiki/ISO_8601
https://docs.python.org/3/library/constants.html#None
https://en.wikipedia.org/wiki/Unix_time
https://en.wikipedia.org/wiki/Unix_time
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/logging.html#logging.LogRecord

structlog Documentation, Release 22.2.0

THREAD_NAME = 'thread_name'

The name of the thread the callsite was executed in.

class structlog.processors.CallsiteParameterAdder(parameters={<CallsiteParameter.PATHNAME:
'pathname'>, <CallsiteParameter.MODULE:
'module'>, <CallsiteParameter.FUNC_NAME:
'func_name'>, <CallsiteParameter.LINENO:
'lineno'>, <CallsiteParameter.THREAD_NAME:
'thread_name'>,
<CallsiteParameter.PROCESS_NAME:
'process_name'>, <CallsiteParameter.PROCESS:
'process'>, <CallsiteParameter.THREAD:
'thread'>, <CallsiteParameter.FILENAME:
'filename'>}, additional_ignores=None)

Adds parameters of the callsite that an event dictionary originated from to the event dictionary. This processor
can be used to enrich events dictionaries with information such as the function name, line number and filename
that an event dictionary originated from.

Warning: This processor cannot detect the correct callsite for invocation of async functions.

If the event dictionary has an embedded logging.LogRecord object and did not originate from structlog then
the callsite information will be determined from the logging.LogRecord object. For event dictionaries without
an embedded logging.LogRecord object the callsite will be determined from the stack trace, ignoring all intra-
structlog calls, calls from the logging module, and stack frames from modules with names that start with values
in additional_ignores, if it is specified.

The keys used for callsite parameters in the event dictionary are the string values of CallsiteParameter enum
members.

Parameters

• parameters (Collection[CallsiteParameter]) – A collection of
CallsiteParameter values that should be added to the event dictionary.

• additional_ignores (list[str] | None) – Additional names with which a stack
frame’s module name must not start for it to be considered when determening the callsite.

Note: When used with structlog.stdlib.ProcessorFormatter the most efficient configuration
is to either use this processor in foreign_pre_chain of structlog.stdlib.ProcessorFormatter
and in processors of structlog.configure, or to use it in processors of structlog.stdlib.
ProcessorFormatter without using it in processors of structlog.configure and foreign_pre_chain
of structlog.stdlib.ProcessorFormatter.

New in version 21.5.0.

78 Chapter 8. API Reference

https://docs.python.org/3/library/logging.html#logging.LogRecord
https://docs.python.org/3/library/logging.html#logging.LogRecord
https://docs.python.org/3/library/logging.html#logging.LogRecord
https://docs.python.org/3/library/logging.html#module-logging
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str

structlog Documentation, Release 22.2.0

8.1.7 structlog.stdlib Module

Processors and helpers specific to the logging module from the Python standard library.

See also structlog’s standard library support.

structlog.stdlib.recreate_defaults(*, log_level=0)
Recreate defaults on top of standard library’s logging.

The output looks the same, but goes through logging.

As with vanilla defaults, the backwards-compatibility guarantees don’t apply to the settings applied here.

Parameters
log_level (int | None) – If None, don’t configure standard library logging at all.

Otherwise configure it to log to sys.stdout at log_level (logging.NOTSET being the default).

If you need more control over logging, pass None here and configure it yourself.

New in version 22.1.

structlog.stdlib.get_logger(*args, **initial_values)
Only calls structlog.get_logger, but has the correct type hints.

Warning: Does not check whether – or ensure that – you’ve configured structlog for standard library
logging!

See Standard Library Logging for details.

New in version 20.2.0.

class structlog.stdlib.BoundLogger(logger, processors, context)
Python Standard Library version of structlog.BoundLogger.

Works exactly like the generic one except that it takes advantage of knowing the logging methods in advance.

Use it like:

structlog.configure(
wrapper_class=structlog.stdlib.BoundLogger,

)

It also contains a bunch of properties that pass-through to the wrapped logging.Logger which should make it
work as a drop-in replacement.

bind(**new_values)
Return a new logger with new_values added to the existing ones.

critical(event=None, *args, **kw)
Process event and call logging.Logger.critical with the result.

8.1. API Reference 79

https://docs.python.org/3/library/logging.html#module-logging
https://docs.python.org/
https://docs.python.org/3/library/logging.html#module-logging
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/sys.html#sys.stdout
https://docs.python.org/3/library/logging.html#module-logging
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/logging.html#module-logging
https://docs.python.org/3/library/logging.html#logging.Logger
https://docs.python.org/3/library/logging.html#logging.Logger.critical

structlog Documentation, Release 22.2.0

debug(event=None, *args, **kw)
Process event and call logging.Logger.debug with the result.

error(event=None, *args, **kw)
Process event and call logging.Logger.error with the result.

exception(event=None, *args, **kw)
Process event and call logging.Logger.error with the result, after setting exc_info to True.

info(event=None, *args, **kw)
Process event and call logging.Logger.info with the result.

log(level, event=None, *args, **kw)
Process event and call the appropriate logging method depending on level.

new(**new_values)
Clear context and binds initial_values using bind .

Only necessary with dict implementations that keep global state like those wrapped by structlog.
threadlocal.wrap_dict when threads are re-used.

try_unbind(*keys)
Like unbind(), but best effort: missing keys are ignored.

New in version 18.2.0.

unbind(*keys)
Return a new logger with keys removed from the context.

Raises
KeyError – If the key is not part of the context.

warn(event=None, *args, **kw)
Process event and call logging.Logger.warning with the result.

warning(event=None, *args, **kw)
Process event and call logging.Logger.warning with the result.

class structlog.stdlib.AsyncBoundLogger(logger, processors, context, *, _sync_bl=None, _loop=None)
Wraps a BoundLogger & exposes its logging methods as async versions.

Instead of blocking the program, they are run asynchronously in a thread pool executor.

This means more computational overhead per log call. But it also means that the processor chain (e.g. JSON
serialization) and I/O won’t block your whole application.

80 Chapter 8. API Reference

https://docs.python.org/3/library/logging.html#logging.Logger.debug
https://docs.python.org/3/library/logging.html#logging.Logger.error
https://docs.python.org/3/library/logging.html#logging.Logger.error
https://docs.python.org/3/library/constants.html#True
https://docs.python.org/3/library/logging.html#logging.Logger.info
https://docs.python.org/3/library/exceptions.html#KeyError
https://docs.python.org/3/library/logging.html#logging.Logger.warning
https://docs.python.org/3/library/logging.html#logging.Logger.warning

structlog Documentation, Release 22.2.0

Only available for Python 3.7 and later.

Variables
sync_bl (structlog.stdlib.BoundLogger) – The wrapped synchronous logger. It is useful
to be able to log synchronously occasionally.

New in version 20.2.0.

Changed in version 20.2.0: fix _dispatch_to_sync contextvars usage

class structlog.stdlib.LoggerFactory(ignore_frame_names=None)
Build a standard library logger when an instance is called.

Sets a custom logger using logging.setLoggerClass() so variables in log format are expanded properly.

>>> from structlog import configure
>>> from structlog.stdlib import LoggerFactory
>>> configure(logger_factory=LoggerFactory())

Parameters
ignore_frame_names (list[str] | None) – When guessing the name of a logger, skip
frames whose names start with one of these. For example, in pyramid applications you’ll want
to set it to ["venusian", "pyramid.config"]. This argument is called additional_ignores
in other APIs throughout structlog.

__call__(*args)
Deduce the caller’s module name and create a stdlib logger.

If an optional argument is passed, it will be used as the logger name instead of guesswork. This op-
tional argument would be passed from the structlog.get_logger() call. For example structlog.
get_logger("foo") would cause this method to be called with "foo" as its first positional argument.

Changed in version 0.4.0: Added support for optional positional arguments. Using the first one for naming
the constructed logger.

structlog.stdlib.render_to_log_kwargs(_, __, event_dict)
Render event_dict into keyword arguments for logging.log.

The event field is translated into msg and the rest of the event_dict is added as extra.

This allows you to defer formatting to logging.

New in version 17.1.0.

Changed in version 22.1.0: exc_info, stack_info, and stackLevel are passed as proper kwargs and not put
into extra.

structlog.stdlib.filter_by_level(logger, method_name, event_dict)
Check whether logging is configured to accept messages from this log level.

Should be the first processor if stdlib’s filtering by level is used so possibly expensive processors like exception
formatters are avoided in the first place.

>>> import logging
>>> from structlog.stdlib import filter_by_level
>>> logging.basicConfig(level=logging.WARN)

(continues on next page)

8.1. API Reference 81

https://docs.python.org/3/library/logging.html#logging.setLoggerClass
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/logging.html#logging.log
https://docs.python.org/3/library/logging.html#module-logging

structlog Documentation, Release 22.2.0

(continued from previous page)

>>> logger = logging.getLogger()
>>> filter_by_level(logger, 'warn', {})
{}
>>> filter_by_level(logger, 'debug', {})
Traceback (most recent call last):
...
DropEvent

structlog.stdlib.add_log_level(logger, method_name, event_dict)
Add the log level to the event dict under the level key.

Since that’s just the log method name, this processor works with non-stdlib logging as well. Therefore it’s
importable both from structlog.processors as well as from structlog.stdlib.

New in version 15.0.0.

Changed in version 20.2.0: Importable from structlog.processors (additionally to structlog.stdlib).

structlog.stdlib.add_log_level_number(logger, method_name, event_dict)
Add the log level number to the event dict.

Log level numbers map to the log level names. The Python stdlib uses them for filtering logic. This adds the
same numbers so users can leverage similar filtering. Compare:

level in ("warning", "error", "critical")
level_number >= 30

The mapping of names to numbers is in structlog.stdlib._log_levels._NAME_TO_LEVEL.

New in version 18.2.0.

structlog.stdlib.add_logger_name(logger, method_name, event_dict)
Add the logger name to the event dict.

structlog.stdlib.ExtraAdder(allow=None)
Add extra attributes of logging.LogRecord objects to the event dictionary.

This processor can be used for adding data passed in the extra parameter of the logging module’s log methods
to the event dictionary.

Parameters
allow (Collection[str] | None) – An optional collection of attributes that, if present in
logging.LogRecord objects, will be copied to event dictionaries.

If allow is None all attributes of logging.LogRecord objects that do not exist on a standard
logging.LogRecord object will be copied to event dictionaries.

New in version 21.5.0.

82 Chapter 8. API Reference

https://docs.python.org/3/library/logging.html#logging.LogRecord
https://docs.python.org/3/library/logging.html#module-logging
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/logging.html#logging.LogRecord
https://docs.python.org/3/library/logging.html#logging.LogRecord
https://docs.python.org/3/library/logging.html#logging.LogRecord

structlog Documentation, Release 22.2.0

class structlog.stdlib.PositionalArgumentsFormatter(remove_positional_args=True)
Apply stdlib-like string formatting to the event key.

If the positional_args key in the event dict is set, it must contain a tuple that is used for formatting (using the
%s string formatting operator) of the value from the event key. This works in the same way as the stdlib handles
arguments to the various log methods: if the tuple contains only a single dict argument it is used for keyword
placeholders in the event string, otherwise it will be used for positional placeholders.

positional_args is populated by structlog.stdlib.BoundLogger or can be set manually.

The remove_positional_args flag can be set to False to keep the positional_args key in the event dict; by
default it will be removed from the event dict after formatting a message.

class structlog.stdlib.ProcessorFormatter(processor=None, processors=(), foreign_pre_chain=None,
keep_exc_info=False, keep_stack_info=False, logger=None,
pass_foreign_args=False, *args, **kwargs)

Call structlog processors on logging.LogRecords.

This is an implementation of a logging.Formatter that can be used to format log entries from both structlog
and logging.

Its static method wrap_for_formatter must be the final processor in structlog’s processor chain.

Please refer to Rendering Using structlog-based Formatters Within logging for examples.

Parameters

• foreign_pre_chain (Sequence[Processor] | None) – If not None, it is used as a pro-
cessor chain that is applied to non-structlog log entries before the event dictionary is passed
to processors. (default: None)

• processors (Sequence[Processor] | None) – A chain of structlog processors that is
used to process all log entries. The last one must render to a str which then gets passed on
to logging for output.

Compared to structlog’s regular processor chains, there’s a few differences:

– The event dictionary contains two additional keys:

1. _record: a logging.LogRecord that either was created using logging APIs, or is a
wrapped structlog log entry created by wrap_for_formatter.

2. _from_structlog: a bool that indicates whether or not _record was created by a
structlog logger.

Since you most likely don’t want _record and _from_structlog in your log files, we’ve
added the static method remove_processors_meta to ProcessorFormatter that you
can add just before your renderer.

– Since this is a logging formatter, raising structlog.DropEvent will crash your appli-
cation.

• keep_exc_info (bool) – exc_info on logging.LogRecords is added to the
event_dict and removed afterwards. Set this to True to keep it on the logging.
LogRecord. (default: False)

• keep_stack_info (bool) – Same as keep_exc_info except for stack_info. (default:
False)

8.1. API Reference 83

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/constants.html#False
https://docs.python.org/3/library/logging.html#logging.LogRecord
https://docs.python.org/3/library/logging.html#logging.Formatter
https://docs.python.org/3/library/logging.html#module-logging
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/logging.html#module-logging
https://docs.python.org/3/library/logging.html#logging.LogRecord
https://docs.python.org/3/library/logging.html#module-logging
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/logging.html#module-logging
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/logging.html#logging.LogRecord
https://docs.python.org/3/library/logging.html#logging.LogRecord
https://docs.python.org/3/library/logging.html#logging.LogRecord
https://docs.python.org/3/library/functions.html#bool

structlog Documentation, Release 22.2.0

• logger (logging.Logger | None) – Logger which we want to push through the struct-
log processor chain. This parameter is necessary for some of the processors like
filter_by_level. (default: None)

• pass_foreign_args (bool) – If True, pass a foreign log record’s args attribute to the
event_dict under positional_args key. (default: False)

• processor (Processor | None) – A single structlog processor used for rendering the
event dictionary before passing it off to logging. Must return a str. The event dictionary
does not contain _record and _from_structlog.

This parameter exists for historic reasons. Please consider using processors instead.

Raises
TypeError – If both or neither processor and processors are passed.

New in version 17.1.0.

New in version 17.2.0: keep_exc_info and keep_stack_info

New in version 19.2.0: logger

New in version 19.2.0: pass_foreign_args

New in version 21.3.0: processors

Deprecated since version 21.3.0: processor (singular) in favor of processors (plural). Removal is not planned.

static remove_processors_meta(_, __, event_dict)
Remove _record and _from_structlog from event_dict.

These keys are added to the event dictionary, before ProcessorFormatter’s processors are run.

New in version 21.3.0.

static wrap_for_formatter(logger, name, event_dict)
Wrap logger, name, and event_dict.

The result is later unpacked by ProcessorFormatter when formatting log entries.

Use this static method as the renderer (i.e. final processor) if you want to use ProcessorFormatter in
your logging configuration.

8.1.8 structlog.tracebacks Module

Extract a structured traceback from an exception.

Contributed by Will McGugan (see https://github.com/hynek/structlog/pull/407#issuecomment-1150926246) from
Rich: https://github.com/Textualize/rich/blob/972dedff/rich/traceback.py

structlog.tracebacks.extract(exc_type, exc_value, traceback, *, show_locals=False, locals_max_string=80)
Extract traceback information.

Parameters

• exc_type (type[BaseException]) – Exception type.

• exc_value (BaseException) – Exception value.

• traceback (types.TracebackType | None) – Python Traceback object.

84 Chapter 8. API Reference

https://docs.python.org/3/library/logging.html#logging.Logger
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/logging.html#module-logging
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/exceptions.html#TypeError
https://docs.python.org/3/library/logging.html#module-logging
https://github.com/hynek/structlog/pull/407#issuecomment-1150926246
https://github.com/Textualize/rich/blob/972dedff/rich/traceback.py
https://docs.python.org/3/library/functions.html#type
https://docs.python.org/3/library/exceptions.html#BaseException
https://docs.python.org/3/library/exceptions.html#BaseException
https://docs.python.org/3/library/types.html#types.TracebackType

structlog Documentation, Release 22.2.0

• show_locals (bool) – Enable display of local variables. Defaults to False.

• locals_max_string (int) – Maximum length of string before truncating, or None to dis-
able.

• max_frames – Maximum number of frames in each stack

Returns
A Trace instance with structured information about all exceptions.

Return type
Trace

New in version 22.1.

class structlog.tracebacks.ExceptionDictTransformer(show_locals=True, locals_max_string=80,
max_frames=50)

Return a list of exception stack dictionaries for for an exception.

These dictionaries are based on Stack instances generated by extract() and can be dumped to JSON.

Parameters

• show_locals (bool) – Whether or not to include the values of a stack frame’s local vari-
ables.

• locals_max_string (int) – The maximum length after which long string representations
are truncated.

• max_frames (int) – Maximum number of frames in each stack. Frames are removed from
the inside out. The idea is, that the first frames represent your code responsible for the
exception and last frames the code where the exception actually happened. With larger web
frameworks, this does not always work, so you should stick with the default.

class structlog.tracebacks.Trace(stacks)
Container for a list of stack traces.

class structlog.tracebacks.Stack(exc_type, exc_value, syntax_error=None, is_cause=False,
frames=<factory>)

Represents an exception and a list of stack frames.

class structlog.tracebacks.Frame(filename, lineno, name, line='', locals=None)
Represents a single stack frame.

class structlog.tracebacks.SyntaxError_(offset, filename, line, lineno, msg)
Contains detailed information about SyntaxError exceptions.

8.1. API Reference 85

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/exceptions.html#SyntaxError

structlog Documentation, Release 22.2.0

8.1.9 structlog.typing Module

Type information used throughout structlog.

For now, they are considered provisional. Especially BindableLogger will probably change to something more ele-
gant.

New in version 22.2.

class structlog.typing.BindableLogger(*args, **kwargs)
Protocol: Methods shared among all bound loggers and that are relied on by structlog.

New in version 20.2.

Additionally to the methods listed below, bound loggers must have a __init__ method with the following
signature:

__init__(self, wrapped_logger: WrappedLogger, processors: Iterable[Processor], context: Context)→
None

Unfortunately it’s impossible to define initializers using PEP 544 Protocols.

They currently also have to carry a Context as a _context attribute.

Note: Currently Sphinx has no support for Protocols, so please click [source] for this entry to see the full
definition.

class structlog.typing.FilteringBoundLogger(*args, **kwargs)
Protocol: A BindableLogger that filters by a level.

The only way to instantiate one is using make_filtering_bound_logger.

New in version 20.2.0.

New in version 22.2.0: String interpolation using positional arguments.

New in version 22.2.0: Async variants alog(), adebug(), ainfo(), and so forth.

Note: Currently Sphinx has no support for Protocols, so please click [source] for this entry to see the full
definition.

class structlog.typing.ExceptionTransformer(*args, **kwargs)
Protocol: A callable that transforms an ExcInfo into another datastructure.

The result should be something that your renderer can work with, e.g., a str or a JSON-serializable dict.

Used by structlog.processors.format_exc_info() and structlog.processors.
ExceptionPrettyPrinter.

Parameters
exc_info – Is the exception tuple to format

Returns
Anything that can be rendered by the last processor in your chain, e.g., a string or a JSON-
serializable structure.

New in version 22.1.

86 Chapter 8. API Reference

https://docs.python.org/3/library/constants.html#None
https://peps.python.org/pep-0544/

structlog Documentation, Release 22.2.0

Note: Currently Sphinx has no support for Protocols, so please click [source] for this entry to see the full
definition.

structlog.typing.EventDict

An event dictionary as it is passed into processors.

It’s created by copying the configured Context but doesn’t need to support copy itself.

New in version 20.2.

alias of MutableMapping[str, Any]

structlog.typing.WrappedLogger = typing.Any

A logger that is wrapped by a bound logger and is ultimately responsible for the output of the log entries.

structlog makes no assumptions about it.

New in version 20.2.

structlog.typing.Processor

A callable that is part of the processor chain.

See Processors.

New in version 20.2.

alias of Callable[[Any, str, MutableMapping[str, Any]], Union[Mapping[str, Any], str, bytes,
bytearray, Tuple[Any, . . .]]]

structlog.typing.Context

A dict-like context carrier.

New in version 20.2.

alias of Union[Dict[str, Any], Dict[Any, Any]]

structlog.typing.ExcInfo

An exception info tuple as returned by sys.exc_info.

New in version 20.2.

alias of Tuple[Type[BaseException], BaseException, Optional[TracebackType]]

structlog.typing.ExceptionRenderer

A callable that pretty-prints an ExcInfo into a file-like object.

Used by structlog.dev.ConsoleRenderer.

New in version 21.2.

alias of Callable[[TextIO, Tuple[Type[BaseException], BaseException, Optional[TracebackType]]],
None]

8.1. API Reference 87

https://docs.python.org/3/library/typing.html#typing.MutableMapping
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.MutableMapping
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/typing.html#typing.Mapping
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/stdtypes.html#bytearray
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/sys.html#sys.exc_info
https://docs.python.org/3/library/typing.html#typing.Type
https://docs.python.org/3/library/exceptions.html#BaseException
https://docs.python.org/3/library/exceptions.html#BaseException
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/types.html#types.TracebackType
https://docs.python.org/3/library/typing.html#typing.TextIO
https://docs.python.org/3/library/typing.html#typing.Type
https://docs.python.org/3/library/exceptions.html#BaseException
https://docs.python.org/3/library/exceptions.html#BaseException
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/types.html#types.TracebackType
https://docs.python.org/3/library/constants.html#None

structlog Documentation, Release 22.2.0

8.1.10 structlog.twisted Module

Processors and tools specific to the Twisted networking engine.

See also structlog’s Twisted support.

class structlog.twisted.BoundLogger(logger, processors, context)
Twisted-specific version of structlog.BoundLogger.

Works exactly like the generic one except that it takes advantage of knowing the logging methods in advance.

Use it like:

configure(
wrapper_class=structlog.twisted.BoundLogger,

)

bind(**new_values)
Return a new logger with new_values added to the existing ones.

err(event=None, **kw)
Process event and call log.err() with the result.

msg(event=None, **kw)
Process event and call log.msg() with the result.

new(**new_values)
Clear context and binds initial_values using bind .

Only necessary with dict implementations that keep global state like those wrapped by structlog.
threadlocal.wrap_dict when threads are re-used.

unbind(*keys)
Return a new logger with keys removed from the context.

Raises
KeyError – If the key is not part of the context.

class structlog.twisted.LoggerFactory

Build a Twisted logger when an instance is called.

>>> from structlog import configure
>>> from structlog.twisted import LoggerFactory
>>> configure(logger_factory=LoggerFactory())

__call__(*args)
Positional arguments are silently ignored.

Rvalue
A new Twisted logger.

88 Chapter 8. API Reference

https://twisted.org/
https://docs.python.org/3/library/exceptions.html#KeyError

structlog Documentation, Release 22.2.0

Changed in version 0.4.0: Added support for optional positional arguments.

class structlog.twisted.EventAdapter(dictRenderer=None)
Adapt an event_dict to Twisted logging system.

Particularly, make a wrapped twisted.python.log.err behave as expected.

Parameters
dictRenderer (Callable[[WrappedLogger, str, EventDict], str] | None) – Ren-
derer that is used for the actual log message. Please note that structlog comes with a dedicated
JSONRenderer.

Must be the last processor in the chain and requires a dictRenderer for the actual formatting as an constructor
argument in order to be able to fully support the original behaviors of log.msg() and log.err().

class structlog.twisted.JSONRenderer(serializer=<function dumps>, **dumps_kw)
Behaves like structlog.processors.JSONRenderer except that it formats tracebacks and failures itself if
called with err().

Note: This ultimately means that the messages get logged out using msg(), and not err() which renders
failures in separate lines.

Therefore it will break your tests that contain assertions using flushLoggedErrors.

Not an adapter like EventAdapter but a real formatter. Also does not require to be adapted using it.

Use together with a JSONLogObserverWrapper-wrapped Twisted logger like plainJSONStdOutLogger for
pure-JSON logs.

structlog.twisted.plainJSONStdOutLogger()

Return a logger that writes only the message to stdout.

Transforms non-JSONRenderer messages to JSON.

Ideal for JSONifying log entries from Twisted plugins and libraries that are outside of your control:

$ twistd -n --logger structlog.twisted.plainJSONStdOutLogger web
{"event": "Log opened.", "system": "-"}
{"event": "twistd 13.1.0 (python 2.7.3) starting up.", "system": "-"}
{"event": "reactor class: twisted...EPollReactor.", "system": "-"}
{"event": "Site starting on 8080", "system": "-"}
{"event": "Starting factory <twisted.web.server.Site ...>", ...}
...

Composes PlainFileLogObserver and JSONLogObserverWrapper to a usable logger.

New in version 0.2.0.

structlog.twisted.JSONLogObserverWrapper(observer)
Wrap a log observer and render non-JSONRenderer entries to JSON.

Parameters
observer (ILogObserver) – Twisted log observer to wrap. For example PlainFileObserver
or Twisted’s stock FileLogObserver

New in version 0.2.0.

8.1. API Reference 89

https://docs.twisted.org/en/stable/api/twisted.python.log.html#err
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.twisted.org/en/stable/api/twisted.trial.unittest.SynchronousTestCase.html#flushLoggedErrors
https://docs.twisted.org/en/stable/api/twisted.python.log.FileLogObserver.html

structlog Documentation, Release 22.2.0

class structlog.twisted.PlainFileLogObserver(file)
Write only the the plain message without timestamps or anything else.

Great to just print JSON to stdout where you catch it with something like runit.

Parameters
file (TextIO) – File to print to.

New in version 0.2.0.

90 Chapter 8. API Reference

CHAPTER

NINE

PROJECT INFORMATION

• License: dual Apache License, version 2 and MIT

• Get Help: please use the structlog tag on Stack Overflow

• Supported Python Versions: 3.7 and later

• PyPI

• Source Code

• Documentation

• Changelog

• Third-party Extensions

9.1 structlog for Enterprise

Available as part of the Tidelift Subscription.

The maintainers of structlog and thousands of other packages are working with Tidelift to deliver commercial support
and maintenance for the open source packages you use to build your applications. Save time, reduce risk, and improve
code health, while paying the maintainers of the exact packages you use. Learn more.

9.2 License and Hall of Fame

structlog is licensed both under the Apache License, Version 2 and the MIT license.

Any contribution intentionally submitted for inclusion in the work by you, as defined in the Apache-2.0 license, shall
be dual licensed as above, without any additional terms or conditions.

The reason for that is to be both protected against patent claims by own contributors and still allow the usage within
GPLv2 software. For more legal details, see this issue on the bug tracker of PyCA’s cryptography project.

The full license texts can be also found in the source code repository:

• Apache License 2.0

• MIT

91

https://www.structlog.org/en/latest/license.html
https://stackoverflow.com/questions/tagged/structlog
https://pypi.org/project/structlog/
https://github.com/hynek/structlog
https://www.structlog.org/
https://www.structlog.org/en/stable/changelog.html
https://github.com/hynek/structlog/wiki/Third-party-Extensions
https://tidelift.com/subscription/pkg/pypi-structlog?utm_source=pypi-structlog&utm_medium=referral&utm_campaign=readme
https://choosealicense.com/licenses/apache/
https://choosealicense.com/licenses/mit/
https://github.com/pyca/cryptography/issues/1209
https://github.com/hynek/structlog/blob/main/LICENSE-APACHE
https://github.com/hynek/structlog/blob/main/LICENSE-MIT

structlog Documentation, Release 22.2.0

9.2.1 Credits

structlog is written and maintained by Hynek Schlawack. The idea of bound loggers is inspired by previous work by
Jean-Paul Calderone and David Reid.

The development is kindly supported by my employer Variomedia AG, structlog’s Tidelift subscribers, and all my
amazing GitHub Sponsors.

A full list of contributors can be found in GitHub’s overview.

The logs-loving futuristic beaver logo has been contributed by Russell Keith-Magee.

9.3 Changelog

All notable changes to this project will be documented in this file.

The format is based on Keep a Changelog and this project adheres to Calendar Versioning.

The first number of the version is the year. The second number is incremented with each release, starting at 1 for
each year. The third number is for emergencies when we need to start branches for older releases.

You can find out backwards-compatibility policy here.

9.3.1 22.2.0 - 2022-11-19

Deprecated

• Accessing package metadata as attributes on the structlog module is deprecated (e.g. structlog.
__version__). Please use importlib.metadata instead (for Python 3.7: the importlib-metadata PyPI pack-
age).

• The structlog.types module is now deprecated in favor of the structlog.typing module. It seems like
the Python typing community is settling on this name.

Added

• FilteringBoundLogger (used by default) now allows for string interpolation using positional arguments:

>>> log.info("Hello %s! The answer is %d.", "World", 42, x=1)
2022-10-07 10:04.31 [info] Hello World! The answer is 42. x=1

#454

• FilteringBoundLogger now also has support for asyncio-based logging. Instead of a wrapper class like
structlog.stdlib.AsyncBoundLogger, async equivalents have been added for all logging methods. So in-
stead of log.info("hello") you can also write await log.ainfo("hello") in async functions and meth-
ods.

This seems like the better approach and if it’s liked by the community, structlog.stdlib.BoundLogger will
get those methods too. #457

92 Chapter 9. Project Information

https://hynek.me/
https://github.com/exarkun
https://github.com/dreid
https://www.variomedia.de/
https://tidelift.com/subscription/pkg/pypi-structlog?utm_source=pypi-structlog&utm_medium=referral&utm_campaign=readme
https://github.com/sponsors/hynek
https://github.com/hynek/structlog/graphs/contributors
https://github.com/freakboy3742
https://keepachangelog.com/en/1.0.0/
https://calver.org/
https://github.com/hynek/structlog/blob/main/.github/SECURITY.md
https://docs.python.org/3.10/library/importlib.metadata.html
https://pypi.org/project/importlib-metadata/
https://github.com/hynek/structlog/pull/454
https://github.com/hynek/structlog/pull/457

structlog Documentation, Release 22.2.0

Changed

• The documentation has been heavily overhauled. Have a look if you haven’t lately! Especially the graphs in the
standard library chapter have proven valuable to many.

• The build backend has been switched to Hatch.

Fixed

• The timestamps in the default configuration now use the correct separator (:) for seconds.

9.3.2 22.1.0 - 2022-07-20

Removed

• Python 3.6 is not supported anymore.

• Pickling is now only possible with protocol version 3 and newer.

Deprecated

• The entire structlog.threadlocal module is deprecated. Please use the primitives from structlog.
contextvars instead.

If you’re using the modern APIs (bind_threadlocal() / merge_threadlocal()) it’s enough to replace them
1:1 with their contextvars counterparts. The old approach around wrap_dict() has been discouraged for a
while.

Currently there are no concrete plans to remove the module, but no patches against it will be accepted from now
on. #409

Added

• structlog.processors.StackInfoRenderer now has an additional_ignores parameter that allows you to
filter out your own logging layer. #396

• Added structlog.WriteLogger, a faster – but more low-level – alternative to structlog.PrintLogger. It
works the way PrintLogger used to work in previous versions. #403 #404

• structlog.make_filtering_bound_logger()-returned loggers now also have a log() method to match
the structlog.stdlib.BoundLogger signature closer. #413

• Added structured logging of tracebacks via the structlog.tracebacks module, and most notably the
structlog.tracebacks.ExceptionDictTransformer which can be used with the new structlog.
processors.ExceptionRenderer to render JSON tracebacks. #407

• structlog.stdlib.recreate_defaults(log_level=logging.NOTSET) that recreates structlog’s de-
faults on top of standard library’s logging. It optionally also configures logging to log to standard out at
the passed log level. #428

• structlog.processors.EventRenamer allows you to rename the hitherto hard-coded event dict key event
to something else. Optionally, you can rename another key to event at the same time, too. So adding
EventRenamer(to="msg", replace_by="_event") to your processor pipeline will rename the standard
event key to msg and then rename the _event key to event. This allows you to use the event key in your
own log files and to have consistent log message keys across languages.

9.3. Changelog 93

https://www.structlog.org/en/latest/standard-library.html
https://hatch.pypa.io/
https://github.com/hynek/structlog/pull/409
https://github.com/hynek/structlog/issues/396
https://github.com/hynek/structlog/pull/403
https://github.com/hynek/structlog/pull/404
https://github.com/hynek/structlog/pull/413
https://github.com/hynek/structlog/pull/407
https://github.com/hynek/structlog/pull/428

structlog Documentation, Release 22.2.0

• structlog.dev.ConsoleRenderer(event_key="event") now allows to customize the name of the key that
is used for the log message.

Changed

• structlog.make_filtering_bound_logger() now returns a method with the same signature for all log
levels, whether they are active or not. This ensures that invalid calls to inactive log levels are caught immediately
and don’t explode once the log level changes. #401

• structlog.PrintLogger – that is used by default – now uses print() for printing, making it a better citizen
for interactive terminal applications. #399

• structlog.testing.capture_logs now works for already initialized bound loggers. #408

• structlog.processors.format_exc_info() is no longer a function, but an instance of structlog.
processors.ExceptionRenderer. Its behavior has not changed. #407

• The default configuration now includes the structlog.contextvars.merge_contextvars processor. That
means you can use structlog.contextvars features without configuring structlog.

Fixed

• Overloaded the bind, unbind, try_unbind and new methods in the FilteringBoundLogger Protocol. This
makes it easier to use objects of type FilteringBoundLogger in a typed context. #392

• Monkeypatched sys.stdouts are now handled more gracefully by ConsoleRenderer (that’s used by default).
#404

• structlog.stdlib.render_to_log_kwargs() now correctly handles the presence of exc_info,
stack_info, and stackLevel in the event dictionary. They are transformed into proper keyword arguments
instead of putting them into the extra dictionary. #424, #427

9.3.3 21.5.0 - 2021-12-16

Added

• Added the structlog.processors.LogfmtRenderer processor to render log lines using the logfmt format.
#376

• Added the structlog.stdlib.ExtraAdder processor that adds extra attributes of logging.LogRecord ob-
jects to the event dictionary. This processor can be used for adding data passed in the extra parameter of the
logging module’s log methods to the event dictionary. #209, #377

• Added the structlog.processor.CallsiteParameterAdder processor that adds parameters of the callsite
that an event dictionary originated from to the event dictionary. This processor can be used to enrich events
dictionaries with information such as the function name, line number and filename that an event dictionary
originated from. #380

94 Chapter 9. Project Information

https://github.com/hynek/structlog/pull/401
https://github.com/hynek/structlog/pull/399
https://github.com/hynek/structlog/pull/412
https://github.com/hynek/structlog/pull/407
https://www.structlog.org/en/stable/contextvars.html
https://docs.python.org/3/library/typing.html#typing.Protocol
https://github.com/hynek/structlog/pull/392
https://github.com/hynek/structlog/pull/404
https://github.com/hynek/structlog/issues/424
https://github.com/hynek/structlog/issues/427
https://brandur.org/logfmt
https://github.com/hynek/structlog/pull/376
https://github.com/hynek/structlog/pull/209
https://github.com/hynek/structlog/pull/377
https://github.com/hynek/structlog/pull/380

structlog Documentation, Release 22.2.0

9.3.4 21.4.0 - 2021-11-25

Added

• Added the structlog.threadlocal.bound_threadlocal and structlog.contextvars.
bound_contextvars decorator/context managers to temporarily bind key-value pairs to a thread-local
and context-local context. #371

Fixed

• Fixed import when running in optimized mode (PYTHONOPTIMIZE=2 or python -OO) . #373

9.3.5 21.3.0 - 2021-11-20

Added

• structlog.dev.ConsoleRenderer now has sort_keys boolean parameter that allows to disable the sorting
of keys on output. #358

Changed

• structlog switched its packaging to flit. Users shouldn’t notice a difference, but (re-)packagers might.

• structlog.stdlib.AsyncBoundLogger now determines the running loop when logging, not on instantia-
tion. That has a minor performance impact, but makes it more robust when loops change (e.g. aiohttp.web.
run_app()), or you want to use sync_bl before a loop has started.

Fixed

• structlog.processors.TimeStamper now works well with FreezeGun even when it gets applied before the
loggers are configured. #364

• structlog.stdlib.ProcessorFormatter now has a processors argument that allows to define a processor
chain to run over all log entries.

Before running the chain, two additional keys are added to the event dictionary: _record and
_from_structlog. With them it’s possible to extract information from logging.LogRecords and differentiate
between structlog and logging log entries while processing them.

The old processor (singular) parameter is now deprecated, but no plans exist to remove it. #365

9.3.6 21.2.0 - 2021-10-12

Added

• structlog.threadlocal.get_threadlocal() and structlog.contextvars.get_contextvars() can
now be used to get a copy of the current thread-local/context-local context that has been bound using structlog.
threadlocal.bind_threadlocal() and structlog.contextvars.bind_contextvars(). #331, #337

• structlog.threadlocal.get_merged_threadlocal(bl) and structlog.contextvars.
get_merged_contextvars(bl) do the same, but also merge the context from a bound logger bl. Same
pull requests as previous change.

9.3. Changelog 95

https://github.com/hynek/structlog/pull/371
https://github.com/hynek/structlog/pull/373
https://github.com/hynek/structlog/pull/358
https://flit.pypa.io/
https://github.com/spulec/freezegun
https://github.com/hynek/structlog/pull/364
https://github.com/hynek/structlog/pull/365
https://github.com/hynek/structlog/pull/331
https://github.com/hynek/structlog/pull/337

structlog Documentation, Release 22.2.0

• structlog.contextvars.bind_contextvars() now returns a mapping of keys to contextvars.Tokens,
allowing you to reset values using the new structlog.contextvars.reset_contextvars(). #339

• Exception rendering in structlog.dev.ConsoleLogger is now configurable using the
exception_formatter setting. If either the Rich or the better-exceptions package is present, structlog
will use them for pretty-printing tracebacks. Rich takes precedence over better-exceptions if both are present.

This only works if format_exc_info is absent in the processor chain. #330, #349

• The final processor can now return a bytearray (additionally to str and bytes). #344

Changed

• To implement pretty exceptions (see Changes below), structlog.dev.ConsoleRenderer now formats excep-
tions itself.

Make sure to remove format_exc_info from your processor chain if you configure structlog manually. This
change is not really breaking, because the old use-case will keep working as before. However if you pass
pretty_exceptions=True (which is the default if either rich or better-exceptions is installed), a warning
will be raised and the exception will be rendered without prettification.

• All use of Colorama on non-Windows systems has been excised. Thus, colors are now enabled by default in
structlog.dev.ConsoleRenderer on non-Windows systems. You can keep using Colorama to customize
colors, of course. #345

Fixed

• structlog is now importable if sys.stdout is None (e.g. when running using pythonw). #313

9.3.7 21.1.0 - 2021-02-18

Changed

• structlog.dev.ConsoleRenderer will now look for a logger_name key if no logger key is set. #295

Fixed

• structlog.threadlocal.wrap_dict() now has a correct type annotation. #290

• Fix isolation in structlog.contextvars. #302

• The default configuration and loggers are pickleable again. #301

9.3.8 20.2.0 - 2020-12-31

Removed

• Python 2.7 and 3.5 aren’t supported anymore. The package meta data should ensure that you keep getting 20.1.0
on those versions. #244

96 Chapter 9. Project Information

https://github.com/hynek/structlog/pull/339
https://github.com/Textualize/rich
https://github.com/qix-/better-exceptions
https://github.com/hynek/structlog/pull/330
https://github.com/hynek/structlog/pull/349
https://github.com/hynek/structlog/issues/344
https://github.com/tartley/colorama
https://github.com/hynek/structlog/pull/345
https://github.com/hynek/structlog/issues/313
https://github.com/hynek/structlog/pull/295
https://github.com/hynek/structlog/pull/290
https://github.com/hynek/structlog/pull/302
https://github.com/hynek/structlog/pull/301
https://github.com/hynek/structlog/pull/244

structlog Documentation, Release 22.2.0

Deprecated

• Accessing the _context attribute of a bound logger is now deprecated. Please use the new structlog.
get_context().

Added

• structlog has now type hints for all of its APIs! Since structlog is highly dynamic and configurable, this led to a
few concessions like a specialized structlog.stdlib.get_logger() whose only difference to structlog.
get_logger() is that it has the correct type hints.

We consider them provisional for the time being – i.e. the backwards-compatibility does not apply to them in its
full strength until we feel we got it right. Please feel free to provide feedback! #223, #282

• Added structlog.make_filtering_logger that can be used like configure(wrapper_class=make_filtering_bound_logger(logging.
INFO)). It creates a highly optimized bound logger whose inactive methods only consist of a return None.
This is now also the default logger.

• As a complement, structlog.stdlib.add_log_level() can now additionally be imported as structlog.
processors.add_log_level since it just adds the method name to the event dict.

• Added structlog.BytesLogger to avoid unnecessary encoding round trips. Concretely this is useful with
orjson which returns bytes. #271

• The final processor now also may return bytes that are passed untouched to the wrapped logger.

• structlog.get_context() allows you to retrieve the original context of a bound logger. #266,

• Added structlog.testing.CapturingLogger for more unit testing goodness.

• Added structlog.stdlib.AsyncBoundLogger that executes logging calls in a thread executor and therefore
doesn’t block. #245

Changed

• The default bound logger (wrapper_class) if you don’t configure structlog has changed. It’s mostly compatible
with the old one but a few uncommon methods like log, failure, or err don’t exist anymore.

You can regain the old behavior by using structlog.configure(wrapper_class=structlog.
BoundLogger).

Please note that due to the various interactions between settings, it’s possible that you encounter even more errors.
We strongly urge you to always configure all possible settings since the default configuration is not covered by
our backwards-compatibility policy.

• structlog.processors.add_log_level() is now part of the default configuration.

• structlog.stdlib.ProcessorFormatter no longer uses exceptions for control flow, allowing
foreign_pre_chain processors to use sys.exc_info() to access the real exception.

9.3. Changelog 97

https://github.com/hynek/structlog/issues/223
https://github.com/hynek/structlog/issues/282
https://github.com/hynek/structlog/issues/271
https://github.com/hynek/structlog/issues/266
https://github.com/hynek/structlog/pull/245

structlog Documentation, Release 22.2.0

Fixed

• structlog.PrintLogger now supports copy.deepcopy(). #268

9.3.9 20.1.0 - 2020-01-28

Deprecated

• This is the last version to support Python 2.7 (including PyPy) and 3.5. All following versions will only support
Python 3.6 or later.

Added

• Added a new module structlog.contextvars that allows to have a global but context-local structlog context
the same way as with structlog.threadlocal since 19.2.0. #201, #236

• Added a new module structlog.testing for first class testing support. The first entry is the context manager
capture_logs() that allows to make assertions about structured log calls. #14, #234

• Added structlog.threadlocal.unbind_threadlocal(). #239

Fixed

• The logger created by structlog.get_logger() is not detected as an abstract method anymore, when attached
to an abstract base class. #229

• Colorama isn’t initialized lazily on Windows anymore because it breaks rendering. #232, #242

9.3.10 19.2.0 - 2019-10-16

Removed

• Python 3.4 is not supported anymore. It has been unsupported by the Python core team for a while now and its
PyPI downloads are negligible.

It’s very unlikely that structlog will break under 3.4 anytime soon, but we don’t test it anymore.

Added

• Full Python 3.8 support for structlog.stdlib.

• Added more pass-through properties to structlog.stdlib.BoundLogger. To makes it easier to use it as a
drop-in replacement for logging.Logger. #198

• Added new processor structlog.dev.set_exc_info() that will set exc_info=True if the method’s name
is exception and exc_info isn’t set at all. This is only necessary when the standard library integration is not
used. It fixes the problem that in the default configuration, structlog.get_logger().exception("hi") in
an except block would not print the exception without passing exc_info=True to it explicitly. #130, #173,
#200, #204

• Added a new thread-local API that allows binding values to a thread-local context explicitly without affecting
the default behavior of bind(). #222, #225

98 Chapter 9. Project Information

https://github.com/hynek/structlog/issues/268
https://github.com/hynek/structlog/issues/201
https://github.com/hynek/structlog/pull/236
https://github.com/hynek/structlog/issues/14
https://github.com/hynek/structlog/pull/234
https://github.com/hynek/structlog/pull/239
https://github.com/hynek/structlog/issues/229
https://github.com/hynek/structlog/issues/232
https://github.com/hynek/structlog/pull/242
https://github.com/hynek/structlog/issues/198
https://github.com/hynek/structlog/issues/130
https://github.com/hynek/structlog/issues/173
https://github.com/hynek/structlog/issues/200
https://github.com/hynek/structlog/issues/204
https://github.com/hynek/structlog/issues/222
https://github.com/hynek/structlog/issues/225

structlog Documentation, Release 22.2.0

• Added pass_foreign_args argument to structlog.stdlib.ProcessorFormatter. It allows to pass a foreign
log record’s args attribute to the event dictionary under the positional_args key. #228

Changed

• structlog.stdlib.ProcessorFormatter now takes a logger object as an optional keyword argument. This
makes ProcessorFormatter work properly with stuctlog.stdlib.filter_by_level(). #219

• structlog.dev.ConsoleRenderer now calls str() on the event value. #221

Fixed

• structlog.dev.ConsoleRenderer now uses no colors by default, if Colorama is not available. #215

• structlog.dev.ConsoleRenderer now initializes Colorama lazily, to prevent accidental side-effects just by
importing structlog. #210

• A best effort has been made to make as much of structlog pickleable as possible to make it friendlier with
multiprocessing and similar libraries. Some classes can only be pickled on Python 3 or using the dill library
though and that is very unlikely to change.

So far, the configuration proxy, structlog.processor.TimeStamper, structlog.BoundLogger,
structlog.PrintLogger and structlog.dev.ConsoleRenderer have been made pickleable. Please
report if you need any another class fixed. #126

9.3.11 19.1.0 - 2019-02-02

Added

• structlog.ReturnLogger and structlog.PrintLogger now have a fatal() log method. #181

Changed

• As announced in 18.1.0, pip install -e .[dev] now installs all development dependencies. Sorry for the
inconveniences this undoubtedly will cause!

• structlog now tolerates passing through dicts to stdlib logging. #187, #188, #189

Fixed

• Under certain (rather unclear) circumstances, the frame extraction could throw an SystemError: error
return without exception set. A workaround has been added. #174

9.3. Changelog 99

https://github.com/hynek/structlog/issues/228
https://github.com/hynek/structlog/issues/219
https://github.com/hynek/structlog/issues/221
https://github.com/hynek/structlog/issues/215
https://github.com/hynek/structlog/issues/210
https://pypi.org/project/dill/
https://github.com/hynek/structlog/issues/126
https://github.com/hynek/structlog/issues/181
https://github.com/hynek/structlog/issues/187
https://github.com/hynek/structlog/pull/188
https://github.com/hynek/structlog/pull/189
https://github.com/hynek/structlog/issues/174

structlog Documentation, Release 22.2.0

9.3.12 18.2.0 - 2018-09-05

Added

• Added structlog.stdlib.add_log_level_number() processor that adds the level number to the event dic-
tionary. Can be used to simplify log filtering. #151

• structlog.processors.JSONRenderer now allows for overwriting the default argument of its serializer.
#77, #163

• Added try_unbind() that works like unbind() but doesn’t raise a KeyError if one of the keys is missing.
#171

9.3.13 18.1.0 - 2018-01-27

Deprecated

• The meaning of the structlog[dev] installation target will change from “colorful output” to “dependencies to
develop structlog” in 19.1.0.

The main reason behind this decision is that it’s impossible to have a structlog in your normal dependencies and
additionally a structlog[dev] for development (pip will report an error).

Added

• structlog.dev.ConsoleRenderer now accepts a force_colors argument to output colored logs even if the
destination is not a tty. Use this option if your logs are stored in files that are intended to be streamed to the
console.

• structlog.dev.ConsoleRenderer now accepts a level_styles argument for overriding the colors for individ-
ual levels, as well as to add new levels. See the docs for ConsoleRenderer.get_default_level_styles()
for usage. #139

• Added structlog.is_configured() to check whether or not structlog has been configured.

• Added structlog.get_config() to introspect current configuration.

Changed

• Empty strings are valid events now. #110

• structlog.stdlib.BoundLogger.exception() now uses the exc_info argument if it has been passed in-
stead of setting it unconditionally to True. #149

• Default configuration now uses plain dicts on Python 3.6+ and PyPy since they are ordered by default.

100 Chapter 9. Project Information

https://github.com/hynek/structlog/pull/151
https://github.com/hynek/structlog/pull/77
https://github.com/hynek/structlog/pull/163
https://github.com/hynek/structlog/pull/171
https://github.com/hynek/structlog/pull/139
https://github.com/hynek/structlog/issues/110
https://github.com/hynek/structlog/pull/149

structlog Documentation, Release 22.2.0

Fixed

• Do not encapsulate Twisted failures twice with newer versions of Twisted. #144

9.3.14 17.2.0 - 2017-05-15

Added

• structlog.stdlib.ProcessorFormatter now accepts keep_exc_info and keep_stack_info arguments to
control what to do with this information on log records. Most likely you want them both to be False there-
fore it’s the default. #109

Fixed

• structlog.stdlib.add_logger_name() now works in structlog.stdlib.ProcessorFormatter’s
foreign_pre_chain. #112

• Clear log record args in structlog.stdlib.ProcessorFormatter after rendering. This fix is for you if
you tried to use it and got TypeError: not all arguments converted during string formatting
exceptions. #116, #117

9.3.15 17.1.0 - 2017-04-24

The main features of this release are massive improvements in standard library’s logging integration. Have a look
at the updated standard library chapter on how to use them! Special thanks go to Fabian Büchler, Gilbert Gilb’s, Iva
Kaneva, insolite, and sky-code, that made them possible.

Added

• Added structlog.stdlib.render_to_log_kwargs(). This allows you to use logging-based formatters to
take care of rendering your entries. #98

• Added structlog.stdlib.ProcessorFormatter which does the opposite: This allows you to run structlog
processors on arbitrary logging.LogRecords. #79, #105

• Added repr_native_str to structlog.processors.KeyValueRenderer and structlog.dev.
ConsoleRenderer. This allows for human-readable non-ASCII output on Python 2 (repr() on Python
2 behaves like ascii() on Python 3 in that regard). As per compatibility policy, it’s on (original behavior) in
KeyValueRenderer and off (human-friendly behavior) in ConsoleRenderer. #94

• Added colors argument to structlog.dev.ConsoleRenderer and made it the default renderer. #78

Changed

• The default renderer now is structlog.dev.ConsoleRenderer if you don’t configure structlog. Colors are
used if available and human-friendly timestamps are prepended. This is in line with our backwards-compatibility
policy that explicitly excludes default settings.

• UNIX epoch timestamps from structlog.processors.TimeStamper are more precise now.

• Positional arguments are now removed even if they are empty. #82

9.3. Changelog 101

https://github.com/hynek/structlog/issues/144
https://github.com/hynek/structlog/issues/109
https://github.com/hynek/structlog/issues/112
https://github.com/hynek/structlog/issues/116
https://github.com/hynek/structlog/issues/117
https://www.structlog.org/en/stable/standard-library.html
https://github.com/fabianbuechler
https://github.com/gilbsgilbs
https://github.com/if-fi
https://github.com/if-fi
https://github.com/insolite
https://github.com/sky-code
https://github.com/hynek/structlog/issues/98
https://github.com/hynek/structlog/issues/79
https://github.com/hynek/structlog/issues/105
https://github.com/hynek/structlog/issues/94
https://github.com/hynek/structlog/pull/78
https://github.com/hynek/structlog/pull/82

structlog Documentation, Release 22.2.0

9.3.16 Fixed

• Fixed bug with Python 3 and structlog.stdlib.BoundLogger.log(). Error log level was not reproducible
and was logged as exception one time out of two. #92

9.3.17 16.1.0 - 2016-05-24

Removed

• Python 3.3 and 2.6 aren’t supported anymore. They may work by chance but any effort to keep them working
has ceased.

The last Python 2.6 release was on October 29, 2013 and isn’t supported by the CPython core team anymore.
Major Python packages like Django and Twisted dropped Python 2.6 a while ago already.

Python 3.3 never had a significant user base and wasn’t part of any distribution’s LTS release.

Added

• Added a drop_missing argument to KeyValueRenderer. If key_order is used and a key is missing a value,
it’s not rendered at all instead of being rendered as None. #67

Fixed

• Exceptions without a __traceback__ are now also rendered on Python 3.

• Don’t cache loggers in lazy proxies returned from get_logger(). This lead to in-place mutation of them if
used before configuration which in turn lead to the problem that configuration was applied only partially to them
later. #72

9.3.18 16.0.0 - 2016-01-28

Added

• Added structlog.dev.ConsoleRenderer that renders the event dictionary aligned and with colors.

• Added structlog.processors.UnicodeDecoder that will decode all byte string values in an event dictionary
to Unicode.

• Added serializer parameter to structlog.processors.JSONRenderer which allows for using different
(possibly faster) JSON encoders than the standard library.

Changed

• structlog.processors.ExceptionPrettyPrinter and structlog.processors.format_exc_info
now support passing of Exceptions on Python 3.

• six is now used for compatibility.

102 Chapter 9. Project Information

https://github.com/hynek/structlog/pull/92
https://github.com/hynek/structlog/pull/67
https://github.com/hynek/structlog/pull/72
https://six.readthedocs.io/

structlog Documentation, Release 22.2.0

Fixed

• The context is now cleaned up when exiting structlog.threadlocal.tmp_bind in case of exceptions. #64

• Be more more lenient about missing __name__s. #62

9.3.19 15.3.0 - 2015-09-25

Added

• Officially support Python 3.5.

• Added structlog.ReturnLogger.failure and structlog.PrintLogger.failure as preparation for the
new Twisted logging system.

Fixed

• Tolerate frames without a __name__, better. #58

9.3.20 15.2.0 - 2015-06-10

Added

• Added option to specify target key in structlog.processors.TimeStamper processor. #51

Changed

• Allow empty lists of processors. This is a valid use case since #26 has been merged. Before, supplying an empty
list resulted in the defaults being used.

• Better support of logging.Logger.exception within structlog. #52

Fixed

• Prevent Twisted’s log.err from quoting strings rendered by structlog.twisted.JSONRenderer.

9.3.21 15.1.0 - 2015-02-24

Fixed

• Tolerate frames without a __name__ when guessing callsite names.

9.3. Changelog 103

https://github.com/hynek/structlog/issues/64
https://github.com/hynek/structlog/pull/62
https://github.com/hynek/structlog/pull/58
https://github.com/hynek/structlog/pull/51
https://github.com/hynek/structlog/issues/26
https://github.com/hynek/structlog/pull/52

structlog Documentation, Release 22.2.0

9.3.22 15.0.0 - 2015-01-23

Added

• Added structlog.stdlib.add_log_level and structlog.stdlib.add_logger_name processors. #44

• Added structlog.stdlib.BoundLogger.log. #42

• Added structlog.stdlib.BoundLogger.exception. #22

Changed

• Pass positional arguments to stdlib wrapped loggers that use string formatting. #19

• structlog is now dually licensed under the Apache License, Version 2 and the MIT license. Therefore it is now
legal to use structlog with GPLv2-licensed projects. #28

9.3.23 0.4.2 - 2014-07-26

Removed

• Drop support for Python 3.2. There is no justification to add complexity for a Python version that nobody uses.
If you are one of the 0.350% that use Python 3.2, please stick to the 0.4 branch; critical bugs will still be fixed.

Added

• Officially support Python 3.4.

• Allow final processor to return a dictionary. See the adapting chapter. #26

• Test Twisted-related code on Python 3 (with some caveats).

Fixed

• Fixed a memory leak in greenlet code that emulates thread locals. It shouldn’t matter in practice unless you use
multiple wrapped dicts within one program that is rather unlikely. #8

• structlog.PrintLogger now is thread-safe.

• from structlog import * works now (but you still shouldn’t use it).

9.3.24 0.4.1 - 2013-12-19

Changed

• Don’t cache proxied methods in structlog.threadlocal._ThreadLocalDictWrapper. This doesn’t affect
regular users.

104 Chapter 9. Project Information

https://github.com/hynek/structlog/pull/44
https://github.com/hynek/structlog/pull/42
https://github.com/hynek/structlog/pull/22
https://github.com/hynek/structlog/pull/19
https://choosealicense.com/licenses/apache/
https://choosealicense.com/licenses/mit/
https://choosealicense.com/licenses/gpl-2.0/
https://github.com/hynek/structlog/pull/28
https://alexgaynor.net/2014/jan/03/pypi-download-statistics/
https://github.com/hynek/structlog/issues/26
https://github.com/hynek/structlog/pull/8

structlog Documentation, Release 22.2.0

Fixed

• Various doc fixes.

9.3.25 0.4.0 - 2013-11-10

Added

• Added structlog.processors.StackInfoRenderer for adding stack information to log entries without in-
volving exceptions. Also added it to default processor chain. #6

• Allow optional positional arguments for structlog.get_logger that are passed to logger factories. The stan-
dard library factory uses this for explicit logger naming. #12

• Add structlog.processors.ExceptionPrettyPrinter for development and testing when multiline log
entries aren’t just acceptable but even helpful.

• Allow the standard library name guesser to ignore certain frame names. This is useful together with frameworks.

• Add meta data (e.g. function names, line numbers) extraction for wrapped stdlib loggers. #5

9.3.26 0.3.2 - 2013-09-27

Fixed

• Fix stdlib’s name guessing.

9.3.27 0.3.1 - 2013-09-26

Fixed

• Added forgotten structlog.processors.TimeStamper to API documentation.

9.3.28 0.3.0 - 2013-09-23

Changes:

• Greatly enhanced and polished the documentation and added a new theme based on Write The Docs, requests,
and Flask.

• Add Python Standard Library-specific BoundLogger that has an explicit API instead of intercepting unknown
method calls. See structlog.stdlib.BoundLogger.

• structlog.ReturnLogger now allows arbitrary positional and keyword arguments.

• Add Twisted-specific BoundLogger that has an explicit API instead of intercepting unknown method calls. See
structlog.twisted.BoundLogger.

• Allow logger proxies that are returned by structlog.get_logger and structlog.wrap_logger to cache
the BoundLogger they assemble according to configuration on first use. See the chapter on performance and the
cache_logger_on_first_use argument of structlog.configure and structlog.wrap_logger.

• Extract a common base class for loggers that does nothing except keeping the context state. This makes writing
custom loggers much easier and more straight-forward. See structlog.BoundLoggerBase.

9.3. Changelog 105

https://github.com/hynek/structlog/pull/6
https://github.com/hynek/structlog/pull/12
https://github.com/hynek/structlog/pull/5

structlog Documentation, Release 22.2.0

9.3.29 0.2.0 - 2013-09-17

Added

• Add key_order option to structlog.processors.KeyValueRenderer for more predictable log entries with
any dict class.

• Enhance Twisted support by offering JSONification of non-structlog log entries.

• Allow for custom serialization in structlog.twisted.JSONRenderer without abusing __repr__.

Changed

• Promote to stable, thus henceforth a strict backwards-compatibility policy is put into effect.

• structlog.PrintLogger now uses proper I/O routines and is thus viable not only for examples but also for
production.

9.3.30 0.1.0 - 2013-09-16

Initial release.

106 Chapter 9. Project Information

CHAPTER

TEN

INDICES AND TABLES

• genindex

• modindex

107

structlog Documentation, Release 22.2.0

108 Chapter 10. Indices and tables

PYTHON MODULE INDEX

s
structlog, 57
structlog.contextvars, 70
structlog.dev, 66
structlog.processors, 72
structlog.stdlib, 79
structlog.testing, 68
structlog.threadlocal, 53
structlog.tracebacks, 84
structlog.twisted, 88
structlog.typing, 86

109

structlog Documentation, Release 22.2.0

110 Python Module Index

INDEX

Symbols
__call__() (structlog.stdlib.LoggerFactory method), 81
__call__() (structlog.twisted.LoggerFactory method),

88
_logger (structlog.BoundLoggerBase attribute), 64
_process_event() (structlog.BoundLoggerBase

method), 64
_proxy_to_logger() (structlog.BoundLoggerBase

method), 65

A
add_log_level() (in module structlog.processors), 74
add_log_level() (in module structlog.stdlib), 82
add_log_level_number() (in module structlog.stdlib),

82
add_logger_name() (in module structlog.stdlib), 82
as_immutable() (in module structlog.threadlocal), 55
AsyncBoundLogger (class in structlog.stdlib), 80

B
better_traceback() (in module structlog.dev), 67
bind() (structlog.BoundLogger method), 59
bind() (structlog.BoundLoggerBase method), 65
bind() (structlog.stdlib.BoundLogger method), 79
bind() (structlog.twisted.BoundLogger method), 88
bind_contextvars() (in module structlog.contextvars),

70
bind_threadlocal() (in module struct-

log.threadlocal), 53
BindableLogger (class in structlog.typing), 86
bound_contextvars() (in module struct-

log.contextvars), 71
bound_threadlocal() (in module struct-

log.threadlocal), 54
BoundLogger (class in structlog), 59
BoundLogger (class in structlog.stdlib), 79
BoundLogger (class in structlog.twisted), 88
BoundLoggerBase (class in structlog), 64
BytesLogger (class in structlog), 63
BytesLoggerFactory (class in structlog), 64

C
CallsiteParameter (class in structlog.processors), 77
CallsiteParameterAdder (class in struct-

log.processors), 78
capture_logs() (in module structlog.testing), 68
CapturedCall (class in structlog.testing), 69
CapturingLogger (class in structlog.testing), 68
CapturingLoggerFactory (class in structlog.testing),

69
clear_contextvars() (in module struct-

log.contextvars), 71
clear_threadlocal() (in module struct-

log.threadlocal), 54
configure() (in module structlog), 58
configure_once() (in module structlog), 58
ConsoleRenderer (class in structlog.dev), 66
Context (in module structlog.typing), 87
critical() (structlog.BytesLogger method), 63
critical() (structlog.PrintLogger method), 61
critical() (structlog.stdlib.BoundLogger method), 79
critical() (structlog.testing.ReturnLogger method), 69
critical() (structlog.WriteLogger method), 62

D
debug() (structlog.BytesLogger method), 63
debug() (structlog.PrintLogger method), 61
debug() (structlog.stdlib.BoundLogger method), 79
debug() (structlog.testing.ReturnLogger method), 69
debug() (structlog.WriteLogger method), 62
dict_tracebacks() (in module structlog.processors),

76
DropEvent, 64

E
err() (structlog.BytesLogger method), 63
err() (structlog.PrintLogger method), 61
err() (structlog.testing.ReturnLogger method), 69
err() (structlog.twisted.BoundLogger method), 88
err() (structlog.WriteLogger method), 62
error() (structlog.BytesLogger method), 63
error() (structlog.PrintLogger method), 61
error() (structlog.stdlib.BoundLogger method), 80

111

structlog Documentation, Release 22.2.0

error() (structlog.testing.ReturnLogger method), 69
error() (structlog.WriteLogger method), 62
EventAdapter (class in structlog.twisted), 89
EventDict (in module structlog.typing), 87
EventRenamer (class in structlog.processors), 74
exception() (structlog.stdlib.BoundLogger method), 80
ExceptionDictTransformer (class in struct-

log.tracebacks), 85
ExceptionPrettyPrinter (class in struct-

log.processors), 76
ExceptionRenderer (class in structlog.processors), 75
ExceptionRenderer (in module structlog.typing), 87
ExceptionTransformer (class in structlog.typing), 86
ExcInfo (in module structlog.typing), 87
ExtraAdder() (in module structlog.stdlib), 82
extract() (in module structlog.tracebacks), 84

F
failure() (structlog.BytesLogger method), 63
failure() (structlog.PrintLogger method), 61
failure() (structlog.testing.ReturnLogger method), 69
failure() (structlog.WriteLogger method), 62
fatal() (structlog.BytesLogger method), 63
fatal() (structlog.PrintLogger method), 61
fatal() (structlog.testing.ReturnLogger method), 70
fatal() (structlog.WriteLogger method), 62
FILENAME (structlog.processors.CallsiteParameter

attribute), 77
filter_by_level() (in module structlog.stdlib), 81
FilteringBoundLogger (class in structlog.typing), 86
format_exc_info() (in module structlog.processors),

75
Frame (class in structlog.tracebacks), 85
FUNC_NAME (structlog.processors.CallsiteParameter at-

tribute), 77

G
get_config() (in module structlog), 59
get_context() (in module structlog), 60
get_contextvars() (in module structlog.contextvars),

71
get_default_level_styles() (struct-

log.dev.ConsoleRenderer static method),
67

get_logger() (in module structlog), 57
get_logger() (in module structlog.stdlib), 79
get_merged_contextvars() (in module struct-

log.contextvars), 71
get_merged_threadlocal() (in module struct-

log.threadlocal), 54
get_threadlocal() (in module structlog.threadlocal),

54
getLogger() (in module structlog), 57

I
info() (structlog.BytesLogger method), 63
info() (structlog.PrintLogger method), 61
info() (structlog.stdlib.BoundLogger method), 80
info() (structlog.testing.ReturnLogger method), 70
info() (structlog.WriteLogger method), 62
is_configured() (in module structlog), 59

J
JSONLogObserverWrapper() (in module struct-

log.twisted), 89
JSONRenderer (class in structlog.processors), 72
JSONRenderer (class in structlog.twisted), 89

K
KeyValueRenderer (class in structlog.processors), 73

L
LINENO (structlog.processors.CallsiteParameter at-

tribute), 77
log() (structlog.BytesLogger method), 63
log() (structlog.PrintLogger method), 61
log() (structlog.stdlib.BoundLogger method), 80
log() (structlog.testing.ReturnLogger method), 70
log() (structlog.WriteLogger method), 62
LogCapture (class in structlog.testing), 68
LogfmtRenderer (class in structlog.processors), 73
LoggerFactory (class in structlog.stdlib), 81
LoggerFactory (class in structlog.twisted), 88

M
make_filtering_bound_logger() (in module struct-

log), 59
merge_contextvars() (in module struct-

log.contextvars), 71
merge_threadlocal() (in module struct-

log.threadlocal), 54
module

structlog, 57
structlog.contextvars, 70
structlog.dev, 66
structlog.processors, 72
structlog.stdlib, 79
structlog.testing, 68
structlog.threadlocal, 53
structlog.tracebacks, 84
structlog.twisted, 88
structlog.typing, 86

MODULE (structlog.processors.CallsiteParameter at-
tribute), 77

msg() (structlog.BytesLogger method), 64
msg() (structlog.PrintLogger method), 61
msg() (structlog.testing.ReturnLogger method), 70

112 Index

structlog Documentation, Release 22.2.0

msg() (structlog.twisted.BoundLogger method), 88
msg() (structlog.WriteLogger method), 62

N
new() (structlog.BoundLogger method), 59
new() (structlog.BoundLoggerBase method), 65
new() (structlog.stdlib.BoundLogger method), 80
new() (structlog.twisted.BoundLogger method), 88

P
PATHNAME (structlog.processors.CallsiteParameter

attribute), 77
plain_traceback() (in module structlog.dev), 67
PlainFileLogObserver (class in structlog.twisted), 89
plainJSONStdOutLogger() (in module struct-

log.twisted), 89
PositionalArgumentsFormatter (class in struct-

log.stdlib), 82
PrintLogger (class in structlog), 60
PrintLoggerFactory (class in structlog), 61
PROCESS (structlog.processors.CallsiteParameter at-

tribute), 77
PROCESS_NAME (structlog.processors.CallsiteParameter

attribute), 77
Processor (in module structlog.typing), 87
ProcessorFormatter (class in structlog.stdlib), 83
Python Enhancement Proposals

PEP 544, 86

R
recreate_defaults() (in module structlog.stdlib), 79
remove_processors_meta() (struct-

log.stdlib.ProcessorFormatter static method),
84

render_to_log_kwargs() (in module structlog.stdlib),
81

reset_contextvars() (in module struct-
log.contextvars), 71

reset_defaults() (in module structlog), 59
ReturnLogger (class in structlog.testing), 69
ReturnLoggerFactory (class in structlog.testing), 70
rich_traceback() (in module structlog.dev), 67

S
set_exc_info() (in module structlog.dev), 68
Stack (class in structlog.tracebacks), 85
StackInfoRenderer (class in structlog.processors), 76
structlog

module, 57
structlog.contextvars

module, 70
structlog.dev

module, 66

structlog.processors
module, 72

structlog.stdlib
module, 79

structlog.testing
module, 68

structlog.threadlocal
module, 53

structlog.tracebacks
module, 84

structlog.twisted
module, 88

structlog.typing
module, 86

SyntaxError_ (class in structlog.tracebacks), 85

T
THREAD (structlog.processors.CallsiteParameter at-

tribute), 77
THREAD_NAME (structlog.processors.CallsiteParameter

attribute), 77
TimeStamper (class in structlog.processors), 77
tmp_bind() (in module structlog.threadlocal), 55
Trace (class in structlog.tracebacks), 85
try_unbind() (structlog.BoundLoggerBase method), 65
try_unbind() (structlog.stdlib.BoundLogger method),

80

U
unbind() (structlog.BoundLogger method), 59
unbind() (structlog.BoundLoggerBase method), 66
unbind() (structlog.stdlib.BoundLogger method), 80
unbind() (structlog.twisted.BoundLogger method), 88
unbind_contextvars() (in module struct-

log.contextvars), 71
unbind_threadlocal() (in module struct-

log.threadlocal), 53
UnicodeDecoder (class in structlog.processors), 74
UnicodeEncoder (class in structlog.processors), 75

W
warn() (structlog.stdlib.BoundLogger method), 80
warning() (structlog.BytesLogger method), 64
warning() (structlog.PrintLogger method), 61
warning() (structlog.stdlib.BoundLogger method), 80
warning() (structlog.testing.ReturnLogger method), 70
warning() (structlog.WriteLogger method), 62
wrap_dict() (in module structlog.threadlocal), 54
wrap_for_formatter() (struct-

log.stdlib.ProcessorFormatter static method),
84

wrap_logger() (in module structlog), 58
WrappedLogger (in module structlog.typing), 87
WriteLogger (class in structlog), 61

Index 113

structlog Documentation, Release 22.2.0

WriteLoggerFactory (class in structlog), 63

114 Index

	Sponsors
	Why …
	… Structured Logging?
	… structlog?
	Easier Logging
	Data Binding
	Powerful Pipelines
	Formatting
	Output
	Highly Testable

	Basics
	Getting Started
	Installation
	Your First Log Entry
	Building a Context
	Manipulating Log Entries in Flight
	Rendering
	structlog and Standard Library’s logging
	asyncio
	Liked what you saw?

	Bound Loggers
	Context
	Output
	Step-by-Step Example

	Filtering by Log Levels
	Wrapping Loggers Manually

	Configuration
	What To Configure
	Wrapper Classes
	Logger Factories
	Processors

	Processors
	Chains
	Examples

	Filtering
	Adapting and Rendering
	Examples

	Third-Party Packages

	Context Variables
	Support for contextvars.Token
	Example: Flask and Thread-Local Data

	Development Affordances
	Console Output
	Disabling Exception Pretty-Printing

	Testing
	Type Hints

	Integration with Existing Systems
	Frameworks
	OpenTelemetry
	Django
	Flask
	Pyramid
	Celery
	Twisted

	Standard Library Logging
	Just Enough logging
	Concrete Bound Logger
	asyncio

	Processors
	Suggested Configurations
	Don’t Integrate
	Rendering Within structlog
	Rendering Using logging-based Formatters
	Rendering Using structlog-based Formatters Within logging

	Twisted
	Concrete Bound Logger
	Processors
	Bending Foreign Logging To Your Will
	Suggested Configuration

	structlog in Practice
	Recipes
	Renaming the event Key
	Fine-Grained Log-Level Filtering
	Custom Wrappers
	Example

	Passing Context to Worker Threads

	Logging Best Practices
	Canonical Log Lines
	Pretty Printing vs. Structured Output
	Centralized Logging
	ELK
	Graylog

	Performance
	Example

	Deprecated Features
	Legacy Thread-local Context
	The merge_threadlocal Processor
	Thread-local Contexts
	Wrapped Dicts
	Downsides & Caveats

	API

	API Reference
	API Reference
	structlog Package
	structlog.dev Module
	structlog.testing Module
	structlog.contextvars Module
	structlog.threadlocal Module
	structlog.processors Module
	structlog.stdlib Module
	structlog.tracebacks Module
	structlog.typing Module
	structlog.twisted Module

	Project Information
	structlog for Enterprise
	License and Hall of Fame
	Credits

	Changelog
	22.2.0 - 2022-11-19
	Deprecated
	Added
	Changed
	Fixed

	22.1.0 - 2022-07-20
	Removed
	Deprecated
	Added
	Changed
	Fixed

	21.5.0 - 2021-12-16
	Added

	21.4.0 - 2021-11-25
	Added
	Fixed

	21.3.0 - 2021-11-20
	Added
	Changed
	Fixed

	21.2.0 - 2021-10-12
	Added
	Changed
	Fixed

	21.1.0 - 2021-02-18
	Changed
	Fixed

	20.2.0 - 2020-12-31
	Removed
	Deprecated
	Added
	Changed
	Fixed

	20.1.0 - 2020-01-28
	Deprecated
	Added
	Fixed

	19.2.0 - 2019-10-16
	Removed
	Added
	Changed
	Fixed

	19.1.0 - 2019-02-02
	Added
	Changed
	Fixed

	18.2.0 - 2018-09-05
	Added

	18.1.0 - 2018-01-27
	Deprecated
	Added
	Changed
	Fixed

	17.2.0 - 2017-05-15
	Added
	Fixed

	17.1.0 - 2017-04-24
	Added
	Changed

	Fixed
	16.1.0 - 2016-05-24
	Removed
	Added
	Fixed

	16.0.0 - 2016-01-28
	Added
	Changed
	Fixed

	15.3.0 - 2015-09-25
	Added
	Fixed

	15.2.0 - 2015-06-10
	Added
	Changed
	Fixed

	15.1.0 - 2015-02-24
	Fixed

	15.0.0 - 2015-01-23
	Added
	Changed

	0.4.2 - 2014-07-26
	Removed
	Added
	Fixed

	0.4.1 - 2013-12-19
	Changed
	Fixed

	0.4.0 - 2013-11-10
	Added

	0.3.2 - 2013-09-27
	Fixed

	0.3.1 - 2013-09-26
	Fixed

	0.3.0 - 2013-09-23
	Changes:

	0.2.0 - 2013-09-17
	Added
	Changed

	0.1.0 - 2013-09-16

	Indices and tables
	Python Module Index
	Index

