

Structured Logging for Python

Release v17.1.0 (What’s new?).

structlog makes logging in Python less painful and more powerful by adding structure to your log entries.

It’s up to you whether you want structlog to take care about the output of your log entries or whether you prefer to forward them to an existing logging system like the standard library’s logging module.
No monkey patching [https://en.wikipedia.org/wiki/Monkey_patch] involved in either case.

Easier Logging

You can stop writing prose and start thinking in terms of an event that happens in the context of key/value pairs:

>>> from structlog import get_logger
>>> log = get_logger()
>>> log.info("key_value_logging", out_of_the_box=True, effort=0)
2016-04-20 16:20.13 key_value_logging effort=0 out_of_the_box=True

Each log entry is a meaningful dictionary instead of an opaque string now!

Data Binding

Since log entries are dictionaries, you can start binding and re-binding key/value pairs to your loggers to ensure they are present in every following logging call:

>>> log = log.bind(user="anonymous", some_key=23)
>>> log = log.bind(user="hynek", another_key=42)
>>> log.info("user.logged_in", happy=True)
2016-04-20 16:20.13 user.logged_in another_key=42 happy=True some_key=23 user='hynek'

Powerful Pipelines

Each log entry goes through a processor pipeline [http://www.structlog.org/en/stable/processors.html] that is just a chain of functions that receive a dictionary and return a new dictionary that gets fed into the next function.
That allows for simple but powerful data manipulation:

def timestamper(logger, log_method, event_dict):
 """Add a timestamp to each log entry."""
 event_dict["timestamp"] = time.time()
 return event_dict

There are plenty of processors [http://www.structlog.org/en/stable/api.html#module-structlog.processors] for most common tasks coming with structlog:

	Collectors of call stack information [http://www.structlog.org/en/stable/api.html#structlog.processors.StackInfoRenderer] (“How did this log entry happen?”),

	…and exceptions [http://www.structlog.org/en/stable/api.html#structlog.processors.format_exc_info] (“What happened‽”).

	Unicode encoders/decoders.

	Flexible timestamping [http://www.structlog.org/en/stable/api.html#structlog.processors.TimeStamper].

Formatting

structlog is completely flexible about how the resulting log entry is emitted.
Since each log entry is a dictionary, it can be formatted to any format:

	A colorful key/value format for local development [http://www.structlog.org/en/stable/development.html],

	JSON [http://www.structlog.org/en/stable/api.html#structlog.processors.JSONRenderer] for easy parsing,

	or some standard format you have parsers for like nginx or Apache httpd.

Internally, formatters are processors whose return value (usually a string) is passed into loggers that are responsible for the output of your message.
structlog comes with multiple useful formatters out of-the-box.

Output

structlog is also very flexible with the final output of your log entries:

	A built-in lightweight printer like in the examples above.
Easy to use and fast.

	Use the standard library‘s or Twisted‘s logging modules for compatibility.
In this case structlog works like a wrapper that formats a string and passes them off into existing systems that won’t ever know that structlog even exists.
Or the other way round: structlog comes with a logging formatter that allows for processing third party log records.

	Don’t format it to a string at all!
structlog passes you a dictionary and you can do with it whatever you want.
Reported uses cases are sending them out via network or saving them in a database.

User’s Guide

Basics

	Why…
	…Structured Logging?

	…structlog?

	Getting Started
	Installation

	Your First Log Entry

	Building a Context

	structlog and Standard Library’s logging

	Liked what you saw?

	Loggers
	Bound Loggers

	Printing and Testing

	Configuration
	Global Defaults

	Logger Factories

	Where to Configure

	Thread Local Context
	Immutability

	Wrapped Dicts

	Downsides & Caveats

	Processors
	Chains

	Filtering

	Adapting and Rendering

	Third Party Packages

	Examples
	Flask and Thread Local Data

	Twisted, and Logging Out Objects

	Processors

	Development

Integration with Existing Systems

structlog can be used immediately with any existing logger.
However it comes with special wrappers for the Python standard library and Twisted that are optimized for their respective underlying loggers and contain less magic.

	Standard Library Logging
	Concrete Bound Logger

	Processors

	Suggested Configurations

	Twisted
	Concrete Bound Logger

	Processors

	Bending Foreign Logging To Your Will

	Suggested Configuration

	Logging Best Practices
	Common Ideas

	Local Logging

	Centralized Logging

Advanced Topics

	Custom Wrappers

	Performance

API Reference

	API Reference
	structlog Package

	dev Module

	threadlocal Module

	processors Module

	stdlib Module

	twisted Module

Project Information

structlog is dual-licensed under Apache License, version 2 [http://choosealicense.com/licenses/apache/] and MIT [http://choosealicense.com/licenses/mit/], available from PyPI [https://pypi.python.org/pypi/structlog/], the source code can be found on GitHub [https://github.com/hynek/structlog], the documentation at http://www.structlog.org/.

structlog targets Python 2.7, 3.4 and newer, and PyPy.

If you need any help, visit us on #structlog on Freenode [https://freenode.net]!

	Backward Compatibility

	How To Contribute

	License and Hall of Fame

	Authors

	Changelog

Indices and tables

	Index

	Module Index

	Search Page

Why…

…Structured Logging?

I believe the widespread use of format strings in logging is based on two presumptions:

	The first level consumer of a log message is a human.

	The programmer knows what information is needed to debug an issue.

I believe these presumptions are no longer correct in server side software.

 Getting Started

Getting Started

Installation

structlog can be easily installed using:

$ pip install structlog

If you’d like colorful output in development (you know you do!), install using:

$ pip install structlog[dev]

Your First Log Entry

A lot of effort went into making structlog accessible without reading pages of documentation.
And indeed, the simplest possible usage looks like this:

>>> import structlog
>>> log = structlog.get_logger()
>>> log.msg("greeted", whom="world", more_than_a_string=[1, 2, 3])
2016-09-17 10:13.45 greeted more_than_a_string=[1, 2, 3] whom='world'

Here, structlog takes full advantage of its hopefully useful default settings:

	Output is sent to standard out [https://en.wikipedia.org/wiki/Standard_out#Standard_output_.28stdout.29] instead of exploding into the user’s face.
Yes, that seems a rather controversial attitude towards logging.

	All keywords are formatted using structlog.dev.ConsoleRenderer.
That in turn uses repr() [https://docs.python.org/2/reference/datamodel.html#object.__repr__] to serialize all values to strings.
Thus, it’s easy to add support for logging of your own objects[*].

	If you have colorama [https://pypi.org/project/colorama/] installed, it’s even rendered in nice colors.

It should be noted that even in most complex logging setups the example would still look just like that thanks to Configuration.

Note

For brewity and to enable doctests, all further examples in structlog‘s documentation use the more simplistic structlog.processors.KeyValueRenderer() without timestamps.

There you go, structured logging!
However, this alone wouldn’t warrant its own package.
After all, there’s even a recipe [https://docs.python.org/2/howto/logging-cookbook.html] on structured logging for the standard library.
So let’s go a step further.

Building a Context

Imagine a hypothetical web application that wants to log out all relevant data with just the API from above:

from structlog import get_logger

log = get_logger()

def view(request):
 user_agent = request.get('HTTP_USER_AGENT', 'UNKNOWN')
 peer_ip = request.client_addr
 if something:
 log.msg('something', user_agent=user_agent, peer_ip=peer_ip)
 return 'something'
 elif something_else:
 log.msg('something_else', user_agent=user_agent, peer_ip=peer_ip)
 return 'something_else'
 else:
 log.msg('else', user_agent=user_agent, peer_ip=peer_ip)
 return 'else'

The calls themselves are nice and straight to the point, however you’re repeating yourself all over the place.
At this point, you’ll be tempted to write a closure like

def log_closure(event):
 log.msg(event, user_agent=user_agent, peer_ip=peer_ip)

inside of the view.
Problem solved?
Not quite.
What if the parameters are introduced step by step?
Do you really want to have a logging closure in each of your views?

Let’s have a look at a better approach:

from structlog import get_logger

logger = get_logger()

def view(request):
 log = logger.bind(
 user_agent=request.get('HTTP_USER_AGENT', 'UNKNOWN'),
 peer_ip=request.client_addr,
)
 foo = request.get('foo')
 if foo:
 log = log.bind(foo=foo)
 if something:
 log.msg('something')
 return 'something'
 elif something_else:
 log.msg('something_else')
 return 'something_else'
 else:
 log.msg('else')
 return 'else'

Suddenly your logger becomes your closure!

For structlog, a log entry is just a dictionary called event dict[ionary]:

	You can pre-build a part of the dictionary step by step.
These pre-saved values are called the context.

	As soon as an event happens – which is a dictionary too – it is merged together with the context to an event dict and logged out.

	If you don’t like the concept of pre-building a context: just don’t!
Convenient key-value-based logging is great to have on its own.

	To keep as much order of the keys as possible, an collections.OrderedDict [https://docs.python.org/3/library/collections.html#collections.OrderedDict] is used for the context by default.

	The recommended way of binding values is the one in these examples: creating new loggers with a new context.
If you’re okay with giving up immutable local state for convenience, you can also use thread/greenlet local storage for the context.

structlog and Standard Library’s logging

structlog‘s primary application isn’t printing though.
Instead, it’s intended to wrap your existing loggers and add structure and incremental context building to them.
For that, structlog is completely agnostic of your underlying logger – you can use it with any logger you like.

The most prominent example of such an ‘existing logger’ is without doubt the logging module in the standard library.
To make this common case as simple as possible, structlog comes with some tools to help you:

>>> import logging
>>> logging.basicConfig()
>>> from structlog import get_logger, configure
>>> from structlog.stdlib import LoggerFactory
>>> configure(logger_factory=LoggerFactory())
>>> log = get_logger()
>>> log.warn('it works!', difficulty='easy')
WARNING:structlog...:difficulty='easy' event='it works!'

In other words, you tell structlog that you would like to use the standard library logger factory and keep calling get_logger() like before.

Since structlog is mainly used together with standard library’s logging, there’s more goodness to make it as fast and convenient as possible.

Liked what you saw?

Now you’re all set for the rest of the user’s guide.
If you want to see more code, make sure to check out the Examples!

	[*]	In production, you’re more likely to use JSONRenderer that can also be customized using a __structlog__ method so you don’t have to change your repr methods to something they weren’t originally intended for.

 Loggers

Loggers

Bound Loggers

The center of structlog is the immutable log wrapper BoundLogger.

All it does is:

	Keep a context dictionary and a logger that it’s wrapping,

	recreate itself with (optional) additional context data (the bind() and new() methods),

	recreate itself with less data (unbind()),

	and finally relay all other method calls to the wrapped logger[*] after processing the log entry with the configured chain of processors.

You won’t be instantiating it yourself though.
For that there is the structlog.wrap_logger() function (or the convenience function structlog.get_logger() we’ll discuss in a minute):

>>> from structlog import wrap_logger
>>> class PrintLogger(object):
... def msg(self, message):
... print(message)
>>> def proc(logger, method_name, event_dict):
... print('I got called with', event_dict)
... return repr(event_dict)
>>> log = wrap_logger(PrintLogger(), processors=[proc], context_class=dict)
>>> log2 = log.bind(x=42)
>>> log == log2
False
>>> log.msg('hello world')
I got called with {'event': 'hello world'}
{'event': 'hello world'}
>>> log2.msg('hello world')
I got called with {'x': 42, 'event': 'hello world'}
{'x': 42, 'event': 'hello world'}
>>> log3 = log2.unbind('x')
>>> log == log3
True
>>> log3.msg('nothing bound anymore', foo='but you can structure the event too')
I got called with {'foo': 'but you can structure the event too', 'event': 'nothing bound anymore'}
{'foo': 'but you can structure the event too', 'event': 'nothing bound anymore'}

As you can see, it accepts one mandatory and a few optional arguments:

	logger

	The one and only positional argument is the logger that you want to wrap and to which the log entries will be proxied.
If you wish to use a configured logger factory, set it to None.

	processors

	A list of callables that can filter, mutate, and format the log entry before it gets passed to the wrapped logger.

Default is [format_exc_info(), KeyValueRenderer].

	context_class

	The class to save your context in.
Particularly useful for thread local context storage.

Default is collections.OrderedDict [https://docs.python.org/3/library/collections.html#collections.OrderedDict].

Additionally, the following arguments are allowed too:

	wrapper_class

	A class to use instead of BoundLogger for wrapping.
This is useful if you want to sub-class BoundLogger and add custom logging methods.
BoundLogger’s bind/new methods are sub-classing friendly so you won’t have to re-implement them.
Please refer to the related example for how this may look.

	initial_values

	The values that new wrapped loggers are automatically constructed with.
Useful for example if you want to have the module name as part of the context.

Note

Free your mind from the preconception that log entries have to be serialized to strings eventually.
All structlog cares about is a dictionary of keys and values.
What happens to it depends on the logger you wrap and your processors alone.

This gives you the power to log directly to databases, log aggregation servers, web services, and whatnot.

Printing and Testing

To save you the hassle of using standard library logging for simple standard out logging, structlog ships a PrintLogger that can log into arbitrary files – including standard out (which is the default if no file is passed into the constructor):

>>> from structlog import PrintLogger
>>> PrintLogger().info('hello world!')
hello world!

It’s handy for both examples and in combination with tools like runit [http://smarden.org/runit/] or stdout/stderr-forwarding [https://hynek.me/articles/taking-some-pain-out-of-python-logging/].

Additionally – mostly for unit testing – structlog also ships with a logger that just returns whatever it gets passed into it: ReturnLogger.

>>> from structlog import ReturnLogger
>>> ReturnLogger().msg(42) == 42
True
>>> obj = ['hi']
>>> ReturnLogger().msg(obj) is obj
True
>>> ReturnLogger().msg('hello', when='again')
(('hello',), {'when': 'again'})

	[*]	Since this is slightly magicy, structlog comes with concrete loggers for the Standard Library Logging and Twisted that offer you explicit APIs for the supported logging methods but behave identically like the generic BoundLogger otherwise.

 Configuration

Configuration

Global Defaults

To make logging as unintrusive and straight-forward to use as possible, structlog comes with a plethora of configuration options and convenience functions.
Let me start at the end and introduce you to the ultimate convenience function that relies purely on configuration: structlog.get_logger() (and its Twisted-friendly alias structlog.getLogger()).

The goal is to reduce your per-file logging boilerplate to:

from structlog import get_logger
logger = get_logger()

while still giving you the full power via configuration.

To achieve that you’ll have to call structlog.configure() on app initialization (of course, only if you’re not content with the defaults).
The example from the previous chapter could thus have been written as following:

>>> configure(processors=[proc], context_class=dict)
>>> log = wrap_logger(PrintLogger())
>>> log.msg('hello world')
I got called with {'event': 'hello world'}
{'event': 'hello world'}

In fact, it could even be written like

>>> configure(processors=[proc], context_class=dict)
>>> log = get_logger()
>>> log.msg('hello world')
I got called with {'event': 'hello world'}
{'event': 'hello world'}

because PrintLogger is the default LoggerFactory used (see Logger Factories).

structlog tries to behave in the least surprising way when it comes to handling defaults and configuration:

	Arguments passed to structlog.wrap_logger() always take the highest precedence over configuration.
That means that you can overwrite whatever you’ve configured for each logger respectively.

	If you leave them on None, structlog will check whether you’ve configured default values using structlog.configure() and uses them if so.

	If you haven’t configured or passed anything at all, the default fallback values are used which means collections.OrderedDict [https://docs.python.org/3/library/collections.html#collections.OrderedDict] for context and [StackInfoRenderer, format_exc_info(), KeyValueRenderer] for the processor chain, and False for cache_logger_on_first_use.

If necessary, you can always reset your global configuration back to default values using structlog.reset_defaults().
That can be handy in tests.

Note

Since you will call structlog.wrap_logger() (or one of the get_logger() functions) most likely at import time and thus before you had a chance to configure structlog, they return a proxy that returns a correct wrapped logger on first bind()/new().

Therefore, you must not call new() or bind() in module scope!
Use get_logger()‘s initial_values to achieve pre-populated contexts.

To enable you to log with the module-global logger, it will create a temporary BoundLogger and relay the log calls to it on each call.
Therefore if you have nothing to bind but intend to do lots of log calls in a function, it makes sense performance-wise to create a local logger by calling bind() or new() without any parameters.
See also Performance.

Logger Factories

To make structlog.get_logger() work, one needs one more option that hasn’t been discussed yet: logger_factory.

It is a callable that returns the logger that gets wrapped and returned.
In the simplest case, it’s a function that returns a logger – or just a class.
But you can also pass in an instance of a class with a __call__ method for more complicated setups.

New in version 0.4.0: structlog.get_logger() can optionally take positional parameters.

These will be passed to the logger factories.
For example, if you use run structlog.get_logger('a name') and configure structlog to use the standard library LoggerFactory which has support for positional parameters, the returned logger will have the name 'a name'.

When writing custom logger factories, they should always accept positional parameters even if they don’t use them.
That makes sure that loggers are interchangeable.

For the common cases of standard library logging and Twisted logging, structlog comes with two factories built right in:

	structlog.stdlib.LoggerFactory

	structlog.twisted.LoggerFactory

So all it takes to use structlog with standard library logging is this:

>>> from structlog import get_logger, configure
>>> from structlog.stdlib import LoggerFactory
>>> configure(logger_factory=LoggerFactory())
>>> log = get_logger()
>>> log.critical('this is too easy!')
event='this is too easy!'

By using structlog‘s structlog.stdlib.LoggerFactory, it is also ensured that variables like function names and line numbers are expanded correctly in your log format.

The Twisted example shows how easy it is for Twisted.

Note

LoggerFactory()-style factories always need to get passed as instances like in the examples above.
While neither allows for customization using parameters yet, they may do so in the future.

Calling structlog.get_logger() without configuration gives you a perfectly useful structlog.PrintLogger with the default values explained above.
I don’t believe silent loggers are a sensible default.

Where to Configure

The best place to perform your configuration varies with applications and frameworks.
Ideally as late as possible but before non-framework (i.e. your) code is executed.
If you use standard library’s logging, it makes sense to configure them next to each other.

	Django

	Django has to date unfortunately no concept of an application assembler or “app is done” hooks.
Therefore the bottom of your settings.py will have to do.

	Flask

	See Logging Application Errors [http://flask.pocoo.org/docs/errorhandling/].

	Pyramid

	Application constructor [http://docs.pylonsproject.org/projects/pyramid/en/latest/narr/startup.html#the-startup-process].

	Twisted

	The plugin definition [https://twistedmatrix.com/documents/current/core/howto/plugin.html] is the best place.
If your app is not a plugin, put it into your tac file [https://twistedmatrix.com/documents/current/core/howto/application.html] (and then learn [https://bitbucket.org/jerub/twisted-plugin-example] about plugins).

If you have no choice but have to configure on import time in module-global scope, or can’t rule out for other reasons that that your structlog.configure() gets called more than once, structlog offers structlog.configure_once() that raises a warning if structlog has been configured before (no matter whether using structlog.configure() or configure_once()) but doesn’t change anything.

 Thread Local Context

Thread Local Context

Immutability

You should call some functions with some arguments.

 Processors

Processors

The true power of structlog lies in its combinable log processors.
A log processor is a regular callable, i.e. a function or an instance of a class with a __call__() method.

Chains

The processor chain is a list of processors.
Each processors receives three positional arguments:

	logger

	Your wrapped logger object.
For example logging.Logger [https://docs.python.org/3/library/logging.html#logging.Logger].

	method_name

	The name of the wrapped method.
If you called log.warn('foo'), it will be "warn".

	event_dict

	Current context together with the current event.
If the context was {'a': 42} and the event is "foo", the initial event_dict will be {'a':42, 'event': 'foo'}.

The return value of each processor is passed on to the next one as event_dict until finally the return value of the last processor gets passed into the wrapped logging method.

Examples

If you set up your logger like:

from structlog import PrintLogger, wrap_logger
wrapped_logger = PrintLogger()
logger = wrap_logger(wrapped_logger, processors=[f1, f2, f3, f4])
log = logger.new(x=42)

and call log.msg('some_event', y=23), it results in the following call chain:

wrapped_logger.msg(
 f4(wrapped_logger, 'msg',
 f3(wrapped_logger, 'msg',
 f2(wrapped_logger, 'msg',
 f1(wrapped_logger, 'msg', {'event': 'some_event', 'x': 42, 'y': 23})
)
)
)
)

In this case, f4 has to make sure it returns something wrapped_logger.msg can handle (see Adapting and Rendering).

The simplest modification a processor can make is adding new values to the event_dict.
Parsing human-readable timestamps is tedious, not so UNIX timestamps [https://en.wikipedia.org/wiki/UNIX_time] – let’s add one to each log entry!

import calendar
import time

def timestamper(logger, log_method, event_dict):
 event_dict["timestamp"] = calendar.timegm(time.gmtime())
 return event_dict

Please note, that structlog comes with such an processor built in: TimeStamper.

Filtering

If a processor raises structlog.DropEvent, the event is silently dropped.

Therefore, the following processor drops every entry:

from structlog import DropEvent

def dropper(logger, method_name, event_dict):
 raise DropEvent

But we can do better than that!

How about dropping only log entries that are marked as coming from a certain peer (e.g. monitoring)?

from structlog import DropEvent

class ConditionalDropper(object):
 def __init__(self, peer_to_ignore):
 self._peer_to_ignore = peer_to_ignore

 def __call__(self, logger, method_name, event_dict):
 """
 >>> cd = ConditionalDropper('127.0.0.1')
 >>> cd(None, None, {'event': 'foo', 'peer': '10.0.0.1'})
 {'peer': '10.0.0.1', 'event': 'foo'}
 >>> cd(None, None, {'event': 'foo', 'peer': '127.0.0.1'})
 Traceback (most recent call last):
 ...
 DropEvent
 """
 if event_dict.get('peer') == self._peer_to_ignore:
 raise DropEvent
 else:
 return event_dict

Adapting and Rendering

An important role is played by the last processor because its duty is to adapt the event_dict into something the underlying logging method understands.
With that, it’s also the only processor that needs to know anything about the underlying system.

It can return one of three types:

	A string that is passed as the first (and only) positional argument to the underlying logger.

	A tuple of (args, kwargs) that are passed as log_method(*args, **kwargs).

	A dictionary which is passed as log_method(**kwargs).

Therefore return 'hello world' is a shortcut for return (('hello world',), {}) (the example in Chains assumes this shortcut has been taken).

This should give you enough power to use structlog with any logging system while writing agnostic processors that operate on dictionaries.

Changed in version 14.0.0: Allow final processor to return a dict.

Examples

The probably most useful formatter for string based loggers is JSONRenderer.
Advanced log aggregation and analysis tools like logstash [https://www.elastic.co/products/logstash] offer features like telling them “this is JSON, deal with it” instead of fiddling with regular expressions.

More examples can be found in the examples chapter.
For a list of shipped processors, check out the API documentation.

Third Party Packages

Since processors are self-contained callables,
it’s easy to write your own and to share them in separate packages.
The following processor packages are known to be currently available on PyPI:

	structlog-pretty [https://github.com/underyx/structlog-pretty]: Processors for prettier output – a code syntax highlighter, JSON and XML prettifiers, a multiline string printer, and a numeric value rounder.

Please feel free to submit a pull request to extend this list with your package!

 Examples

Examples

This chapter is intended to give you a taste of realistic usage of structlog.

Flask and Thread Local Data

In the simplest case, you bind a unique request ID to every incoming request so you can easily see which log entries belong to which request.

import logging
import sys
import uuid

import flask
import structlog

from some_module import some_function

logger = structlog.get_logger()
app = flask.Flask(__name__)

@app.route("/login", methods=["POST", "GET"])
def some_route():
 log = logger.new(
 request_id=str(uuid.uuid4()),
)
 # do something
 # ...
 log.info("user logged in", user="test-user")
 # gives you:
 # event='user logged in' request_id='ffcdc44f-b952-4b5f-95e6-0f1f3a9ee5fd' user='test-user'
 # ...
 some_function()
 # ...
 return "logged in!"

if __name__ == "__main__":
 logging.basicConfig(
 format="%(message)s",
 stream=sys.stdout,
 level=logging.INFO,
)
 structlog.configure(
 processors=[
 structlog.processors.KeyValueRenderer(
 key_order=["event", "request_id"],
),
],
 context_class=structlog.threadlocal.wrap_dict(dict),
 logger_factory=structlog.stdlib.LoggerFactory(),
)
 app.run()

some_module.py

from structlog import get_logger

logger = get_logger()

def some_function():
 # later then:
 logger.error('user did something', something='shot_in_foot')
 # gives you:
 # event='user did something 'request_id='ffcdc44f-b952-4b5f-95e6-0f1f3a9ee5fd' something='shot_in_foot'

While wrapped loggers are immutable by default, this example demonstrates how to circumvent that using a thread local dict implementation for context data for convenience (hence the requirement for using new() for re-initializing the logger).

Please note that structlog.stdlib.LoggerFactory is a totally magic-free class that just deduces the name of the caller’s module and does a logging.getLogger() [https://docs.python.org/3/library/logging.html#logging.getLogger] with it.
It’s used by structlog.get_logger() to rid you of logging boilerplate in application code.
If you prefer to name your standard library loggers explicitly, a positional argument to get_logger() gets passed to the factory and used as the name.

Twisted, and Logging Out Objects

If you prefer to log less but with more context in each entry, you can bind everything important to your logger and log it out with each log entry.

import sys
import uuid

import structlog
import twisted

from twisted.internet import protocol, reactor

logger = structlog.getLogger()

class Counter(object):
 i = 0

 def inc(self):
 self.i += 1

 def __repr__(self):
 return str(self.i)

class Echo(protocol.Protocol):
 def connectionMade(self):
 self._counter = Counter()
 self._log = logger.new(
 connection_id=str(uuid.uuid4()),
 peer=self.transport.getPeer().host,
 count=self._counter,
)

 def dataReceived(self, data):
 self._counter.inc()
 log = self._log.bind(data=data)
 self.transport.write(data)
 log.msg('echoed data!')

if __name__ == "__main__":
 structlog.configure(
 processors=[structlog.twisted.EventAdapter()],
 logger_factory=structlog.twisted.LoggerFactory(),
)
 twisted.python.log.startLogging(sys.stderr)
 reactor.listenTCP(1234, protocol.Factory.forProtocol(Echo))
 reactor.run()

gives you something like:

... peer='127.0.0.1' connection_id='1c6c0cb5-...' count=1 data='123\n' event='echoed data!'
... peer='127.0.0.1' connection_id='1c6c0cb5-...' count=2 data='456\n' event='echoed data!'
... peer='127.0.0.1' connection_id='1c6c0cb5-...' count=3 data='foo\n' event='echoed data!'
... peer='10.10.0.1' connection_id='85234511-...' count=1 data='cba\n' event='echoed data!'
... peer='127.0.0.1' connection_id='1c6c0cb5-...' count=4 data='bar\n' event='echoed data!'

Since Twisted’s logging system is a bit peculiar, structlog ships with an adapter so it keeps behaving like you’d expect it to behave.

I’d also like to point out the Counter class that doesn’t do anything spectacular but gets bound once per connection to the logger and since its repr is the number itself, it’s logged out correctly for each event.
This shows off the strength of keeping a dict of objects for context instead of passing around serialized strings.

Processors

Processors are a both simple and powerful feature of structlog.

So you want timestamps as part of the structure of the log entry, censor passwords, filter out log entries below your log level before they even get rendered, and get your output as JSON for convenient parsing?
Here you go:

>>> import datetime, logging, sys
>>> from structlog import wrap_logger
>>> from structlog.processors import JSONRenderer
>>> from structlog.stdlib import filter_by_level
>>> logging.basicConfig(stream=sys.stdout, format='%(message)s')
>>> def add_timestamp(_, __, event_dict):
... event_dict['timestamp'] = datetime.datetime.utcnow()
... return event_dict
>>> def censor_password(_, __, event_dict):
... pw = event_dict.get('password')
... if pw:
... event_dict['password'] = '*CENSORED*'
... return event_dict
>>> log = wrap_logger(
... logging.getLogger(__name__),
... processors=[
... filter_by_level,
... add_timestamp,
... censor_password,
... JSONRenderer(indent=1, sort_keys=True)
...]
...)
>>> log.info('something.filtered')
>>> log.warning('something.not_filtered', password='secret')
{
 "event": "something.not_filtered",
 "password": "*CENSORED*",
 "timestamp": "datetime.datetime(..., ..., ..., ..., ...)"
}

structlog comes with many handy processors build right in – for a list of shipped processors, check out the API documentation.

 Development

Development

To make development a more pleasurable experience, structlog comes with the structlog.dev module.

The highlight is structlog.dev.ConsoleRenderer that offers nicely aligned and colorful console output while in development:

[image: Colorful console output by ConsoleRenderer.]

To use it, just add it as a renderer to your processor chain.
It will recognize logger names, log levels, time stamps, stack infos, and tracebacks as produced by structlog‘s processors and render them in special ways.

Suggested configuration for standard library logging:

import structlog

structlog.configure(
 processors=[
 structlog.stdlib.add_logger_name,
 structlog.stdlib.add_log_level,
 structlog.stdlib.PositionalArgumentsFormatter(),
 structlog.processors.TimeStamper(fmt="%Y-%m-%d %H:%M.%S"),
 structlog.processors.StackInfoRenderer(),
 structlog.processors.format_exc_info,
 structlog.dev.ConsoleRenderer() # <===
],
 context_class=dict,
 logger_factory=structlog.stdlib.LoggerFactory(),
 wrapper_class=structlog.stdlib.BoundLogger,
 cache_logger_on_first_use=True,
)

 Standard Library Logging

Standard Library Logging

Ideally, structlog should be able to be used as a drop-in replacement for standard library’s logging [https://docs.python.org/3/library/logging.html#module-logging] by wrapping it.
In other words, you should be able to replace your call to logging.getLogger() [https://docs.python.org/3/library/logging.html#logging.getLogger] by a call to structlog.get_logger() and things should keep working as before (if structlog is configured right, see Suggested Configurations below).

If you run into incompatibilities, it is a bug so please take the time to report it [https://github.com/hynek/structlog/issues]!
If you’re a heavy logging [https://docs.python.org/3/library/logging.html#module-logging] user, your help [https://github.com/hynek/structlog/issues?q=is%3Aopen+is%3Aissue+label%3Astdlib] to ensure a better compatibility would be highly appreciated!

Concrete Bound Logger

To make structlog‘s behavior less magicy, it ships with a standard library-specific wrapper class that has an explicit API instead of improvising: structlog.stdlib.BoundLogger.
It behaves exactly like the generic structlog.BoundLogger except:

	it’s slightly faster due to less overhead,

	has an explicit API that mirrors the log methods of standard library’s logging.Logger [https://docs.python.org/3/library/logging.html#logging.Logger],

	hence causing less cryptic error messages if you get method names wrong.

Processors

structlog comes with a few standard library-specific processors:

	render_to_log_kwargs():

	Renders the event dictionary into keyword arguments for logging.log() [https://docs.python.org/3/library/logging.html#logging.log] that attaches everything except the event field to the extra argument.
This is useful if you want to render your log entries entirely within logging [https://docs.python.org/3/library/logging.html#module-logging].

	filter_by_level():

	Checks the log entry’s log level against the configuration of standard library’s logging.
Log entries below the threshold get silently dropped.
Put it at the beginning of your processing chain to avoid expensive operations happen in the first place.

	add_logger_name():

	Adds the name of the logger to the event dictionary under the key logger.

	add_log_level():

	Adds the log level to the event dictionary under the key level.

	PositionalArgumentsFormatter:

	This processes and formats positional arguments (if any) passed to log methods in the same way the logging module would do, e.g. logger.info("Hello, %s", name).

structlog also comes with ProcessorFormatter which is a logging.Formatter [https://docs.python.org/3/library/logging.html#logging.Formatter] that enables you to format non-structlog log entries using structlog renderers and multiplex structlog’s output with different renderers (see below for an example).

Suggested Configurations

Depending where you’d like to do your formatting, you can take one of three approaches:

Rendering Using logging [https://docs.python.org/3/library/logging.html#module-logging]-based Formatters

import structlog

structlog.configure(
 processors=[
 structlog.stdlib.filter_by_level,
 structlog.stdlib.add_logger_name,
 structlog.stdlib.add_log_level,
 structlog.stdlib.PositionalArgumentsFormatter(),
 structlog.processors.StackInfoRenderer(),
 structlog.processors.format_exc_info,
 structlog.processors.UnicodeDecoder(),
 structlog.stdlib.render_to_log_kwargs,
],
 context_class=dict,
 logger_factory=structlog.stdlib.LoggerFactory(),
 wrapper_class=structlog.stdlib.BoundLogger,
 cache_logger_on_first_use=True,
)

Now you have the event dict available within each log record.
If you want all your log entries (i.e. also those not from your app/structlog) to be formatted as JSON, you can use the python-json-logger library [https://github.com/madzak/python-json-logger]:

import logging
import sys

from pythonjsonlogger import jsonlogger

handler = logging.StreamHandler(sys.stdout)
handler.setFormatter(jsonlogger.JsonFormatter())
root_logger = logging.getLogger()
root_logger.addHandler(handler)

Now both structlog and logging will emit JSON logs:

>>> structlog.get_logger("test").warning("hello")
{"message": "hello", "logger": "test", "level": "warning"}

>>> logging.getLogger("test").warning("hello")
{"message": "hello"}

Rendering Using structlog-based Formatters Within logging [https://docs.python.org/3/library/logging.html#module-logging]

You can leave rendering for later and yet use structlog’s renderers for it:

import logging.config
import structlog

timestamper = structlog.processors.TimeStamper(fmt="%Y-%m-%d %H:%M:%S")
pre_chain = [
 # Add the log level and a timestamp to the event_dict if the log entry
 # is not from structlog.
 structlog.stdlib.add_log_level,
 timestamper,
]

logging.config.dictConfig({
 "version": 1,
 "disable_existing_loggers": False,
 "formatters": {
 "plain": {
 "()": structlog.stdlib.ProcessorFormatter,
 "processor": structlog.dev.ConsoleRenderer(colors=False),
 "foreign_pre_chain": pre_chain,
 },
 "colored": {
 "()": structlog.stdlib.ProcessorFormatter,
 "processor": structlog.dev.ConsoleRenderer(colors=True),
 "foreign_pre_chain": pre_chain,
 },
 },
 "handlers": {
 "default": {
 "level": "DEBUG",
 "class": "logging.StreamHandler",
 "formatter": "colored",
 },
 "file": {
 "level": "DEBUG",
 "class": "logging.handlers.WatchedFileHandler",
 "filename": "test.log",
 "formatter": "plain",
 },
 },
 "loggers": {
 "": {
 "handlers": ["default", "file"],
 "level": "DEBUG",
 "propagate": True,
 },
 }
})
structlog.configure(
 processors=[
 structlog.stdlib.add_log_level,
 structlog.stdlib.PositionalArgumentsFormatter(),
 timestamper,
 structlog.processors.StackInfoRenderer(),
 structlog.processors.format_exc_info,
 structlog.stdlib.ProcessorFormatter.wrap_for_formatter,
],
 context_class=dict,
 logger_factory=structlog.stdlib.LoggerFactory(),
 wrapper_class=structlog.stdlib.BoundLogger,
 cache_logger_on_first_use=True,
)

This defines two formatters: one plain and one colored.
Both are run for each log entry.
Log entries that do not originate from structlog, are additionally pre-processed using a cached timestamper and add_log_level().

>>> logging.getLogger().warning("bar")
2017-03-06 11:49:27 [warning] bar

>>> structlog.get_logger("structlog").warning("foo", x=42)
2017-03-06 11:49:32 [warning] foo x=42

>>> print(open("test.log").read())
2017-03-06 11:49:27 [warning] bar
2017-03-06 11:49:32 [warning] foo x=42

(sadly, you have to imagine the colors in the first two outputs)

If you leave foreign_pre_chain None, formatting will be left to logging [https://docs.python.org/3/library/logging.html#module-logging].
Meaning: you can define a format for ProcessorFormatter too!

Rendering Within structlog

A basic configuration to output structured logs in JSON format looks like this:

import structlog

structlog.configure(
 processors=[
 structlog.stdlib.filter_by_level,
 structlog.stdlib.add_logger_name,
 structlog.stdlib.add_log_level,
 structlog.stdlib.PositionalArgumentsFormatter(),
 structlog.processors.TimeStamper(fmt="iso"),
 structlog.processors.StackInfoRenderer(),
 structlog.processors.format_exc_info,
 structlog.processors.UnicodeDecoder(),
 structlog.processors.JSONRenderer()
],
 context_class=dict,
 logger_factory=structlog.stdlib.LoggerFactory(),
 wrapper_class=structlog.stdlib.BoundLogger,
 cache_logger_on_first_use=True,
)

(if you’re still runnning Python 2, replace UnicodeDecoder through UnicodeEncoder)

To make your program behave like a proper 12 factor app [https://12factor.net/logs] that outputs only JSON to stdout, configure the logging module like this:

import logging
import sys

logging.basicConfig(
 format="%(message)s",
 stream=sys.stdout,
 level=logging.INFO,
)

In this case only your own logs are formatted as JSON:

>>> structlog.get_logger("test").warning("hello")
{"event": "hello", "logger": "test", "level": "warning", "timestamp": "2017-03-06T07:39:09.518720Z"}

>>> logging.getLogger("test").warning("hello")
hello

 Twisted

Twisted

Warning

Since sys.exc_clear() has been dropped in Python 3, there is currently no way to avoid multiple tracebacks in your log files if using structlog together with Twisted on Python 3.

Concrete Bound Logger

To make structlog‘s behavior less magicy, it ships with a Twisted-specific wrapper class that has an explicit API instead of improvising: structlog.twisted.BoundLogger.
It behaves exactly like the generic structlog.BoundLogger except:

	it’s slightly faster due to less overhead,

	has an explicit API (msg() and err()),

	hence causing less cryptic error messages if you get method names wrong.

In order to avoid that structlog disturbs your CamelCase harmony, it comes with an alias for structlog.get_logger() called structlog.getLogger().

Processors

structlog comes with two Twisted-specific processors:

	EventAdapter

	This is useful if you have an existing Twisted application and just want to wrap your loggers for now.
It takes care of transforming your event dictionary into something twisted.python.log.err [https://twistedmatrix.com/documents/current/api/twisted.python.log.html#err] can digest.

For example:

def onError(fail):
 failure = fail.trap(MoonExploded)
 log.err(failure, _why='event-that-happend')

will still work as expected.

Needs to be put at the end of the processing chain.
It formats the event using a renderer that needs to be passed into the constructor:

configure(processors=[EventAdapter(KeyValueRenderer()])

The drawback of this approach is that Twisted will format your exceptions as multi-line log entries which is painful to parse.
Therefore structlog comes with:

	JSONRenderer

	Goes a step further and circumvents Twisted logger’s Exception/Failure handling and renders it itself as JSON strings.
That gives you regular and simple-to-parse single-line JSON log entries no matter what happens.

Bending Foreign Logging To Your Will

structlog comes with a wrapper for Twisted’s log observers to ensure the rest of your logs are in JSON too: JSONLogObserverWrapper().

What it does is determining whether a log entry has been formatted by JSONRenderer and if not, converts the log entry to JSON with event being the log message and putting Twisted’s system into a second key.

So for example:

2013-09-15 22:02:18+0200 [-] Log opened.

becomes:

2013-09-15 22:02:18+0200 [-] {"event": "Log opened.", "system": "-"}

There is obviously some redundancy here.
Also, I’m presuming that if you write out JSON logs, you’re going to let something else parse them which makes the human-readable date entries more trouble than they’re worth.

To get a clean log without timestamps and additional system fields ([-]), structlog comes with PlainFileLogObserver that writes only the plain message to a file and plainJSONStdOutLogger() that composes it with the aforementioned JSONLogObserverWrapper() and gives you a pure JSON log without any timestamps or other noise straight to standard out [https://en.wikipedia.org/wiki/Standard_out#Standard_output_.28stdout.29]:

$ twistd -n --logger structlog.twisted.plainJSONStdOutLogger web
{"event": "Log opened.", "system": "-"}
{"event": "twistd 13.1.0 (python 2.7.3) starting up.", "system": "-"}
{"event": "reactor class: twisted...EPollReactor.", "system": "-"}
{"event": "Site starting on 8080", "system": "-"}
{"event": "Starting factory <twisted.web.server.Site ...>", ...}
...

Suggested Configuration

import structlog

structlog.configure(
 processors=[
 structlog.processors.StackInfoRenderer(),
 structlog.twisted.JSONRenderer()
],
 context_class=dict,
 logger_factory=structlog.twisted.LoggerFactory(),
 wrapper_class=structlog.twisted.BoundLogger,
 cache_logger_on_first_use=True,
)

See also Logging Best Practices.

 Logging Best Practices

Logging Best Practices

The best practice for you depends very much on your context.
To give you some pointers nevertheless, here are a few scenarios that may be applicable to you.

Pull requests for further interesting approaches as well as refinements and more complete examples are very welcome.

Common Ideas

Logging is not a new concept and in no way special to Python.
Logfiles have existed for decades and there’s little reason to reinvent the wheel in our little world.

There are several concepts that are very well-solved in general and especially in heterogeneous environments, using special tooling for Python applications does more harm than good and makes the operations staff build dart board with your pictures.

Therefore let’s rely on proven tools as much as possible and do only the absolutely necessary inside of Python[*].
A very nice approach is to simply log to standard out [https://en.wikipedia.org/wiki/Standard_out#Standard_output_.28stdout.29] and let other tools take care of the rest.

runit

One runner that makes this very easy is the venerable runit [http://smarden.org/runit/] project which made it a part of its design: server processes don’t detach but log to standard out instead.
There it gets processed by other software – potentially by one of its own tools: svlogd [http://smarden.org/runit/svlogd.8.html].
We use it extensively and it has proven itself extremely robust and capable; check out this tutorial [https://rubyists.github.io/2011/05/02/runit-for-ruby-and-everything-else.html] if you’d like to try it.

If you’re not quite convinced and want an overview on running daemons, have a look at cue’s daemon showdown [https://web.archive.org/web/20130907200323/http://tech.cueup.com/blog/2013/03/08/running-daemons/] that discusses the most common ones.

Local Logging

There are basically two common ways to log to local logfiles: writing yourself into files and syslog.

Syslog

The simplest approach to logging is to forward your entries to the syslogd [https://en.wikipedia.org/wiki/Syslogd].
Twisted, uwsgi, and runit support it directly.
It will happily add a timestamp and write wherever you tell it in its configuration.
You can also log from multiple processes into a single file and use your system’s logrotate [http://manpages.ubuntu.com/manpages/xenial/en/man8/logrotate.8.html] for log rotation.

The only downside is that syslog has some quirks that show itself under high load like rate limits (they can be switched off [http://blog.abhijeetr.com/2013/01/disable-rate-limiting-in-rsyslog-v5.html]) and lost log entries.

runit’s svlogd

If you’ll choose runit for running your daemons, svlogd [http://smarden.org/runit/svlogd.8.html] is a nicer approach.
It receives the log entries via a UNIX pipe and acts on them which includes adding of parse-friendly timestamps in tai64n [http://cr.yp.to/daemontools/tai64n.html] as well as filtering and log rotation.

Centralized Logging

Nowadays you usually don’t want your logfiles in compressed archives distributed over dozens – if not thousands – servers.
You want them at a single location; parsed and easy to query.

Syslog (Again!)

The widely deployed syslog implementation rsyslog [http://www.rsyslog.com] supports remote logging out-of-the-box.
Have a look at this post [http://www.revsys.com/blog/2010/aug/26/centralized-logging-fun-and-profit/] by Revolution Systems on the how.

Since syslog is such a widespread solution, there are also ways to use it with basically any centralized product.

Logstash with logstash-forwarder

Logstash [https://www.elastic.co/products/logstash] is a great way to parse, save, and search your logs.

The general modus operandi is that you have log shippers that parse your log files and forward the log entries to your Logstash server and store is in elasticsearch [https://www.elastic.co/products/elasticsearch].
If your log entries consist of a JSON dictionary (and perhaps a tai64n [http://cr.yp.to/daemontools/tai64n.html] timestamp), this is pretty easy and efficient.

If you can’t decide on a log shipper, logstash-forwarder [https://github.com/elastic/logstash-forwarder] (formerly known as Lumberjack) works really well.
When Logstash’s lumberjack input is configured to use codec => "json", having structlog output JSON is all you need.
See the documentation on the Standard Library Logging for an example configuration.

Graylog2

Graylog [http://graylog2.org] goes one step further.
It not only supports everything those above do (and then some); you can also log directly JSON entries towards it – optionally even through an AMQP server (like RabbitMQ [http://www.rabbitmq.com]) for better reliability.
Additionally, Graylog’s Extended Log Format [http://docs.graylog.org/en/latest/pages/gelf.html] (GELF) allows for structured data which makes it an obvious choice to use together with structlog.

	[*]	This is obviously a privileged UNIX-centric view but even Windows has tools and means for log management although we won’t be able to discuss them here.

 Custom Wrappers

Custom Wrappers

structlog comes with a generic bound logger called structlog.BoundLogger that can be used to wrap any logger class you fancy.
It does so by intercepting unknown method names and proxying them to the wrapped logger.

This works fine, except that it has a performance penalty and the API of BoundLogger isn’t clear from reading the documentation because large parts depend on the wrapped logger.
An additional reason is that you may want to have semantically meaningful log method names that add meta data to log entries as it is fit (see example below).

To solve that, structlog offers you to use an own wrapper class which you can configure using structlog.configure().
And to make it easier for you, it comes with the class structlog.BoundLoggerBase which takes care of all data binding duties so you just add your log methods if you choose to sub-class it.

Example

It’s much easier to demonstrate with an example:

>>> from structlog import BoundLoggerBase, PrintLogger, wrap_logger
>>> class SemanticLogger(BoundLoggerBase):
... def msg(self, event, **kw):
... if not 'status' in kw:
... return self._proxy_to_logger('msg', event, status='ok', **kw)
... else:
... return self._proxy_to_logger('msg', event, **kw)
...
... def user_error(self, event, **kw):
... self.msg(event, status='user_error', **kw)
>>> log = wrap_logger(PrintLogger(), wrapper_class=SemanticLogger)
>>> log = log.bind(user='fprefect')
>>> log.user_error('user.forgot_towel')
user='fprefect' status='user_error' event='user.forgot_towel'

You can observe the following:

	The wrapped logger can be found in the instance variable structlog.BoundLoggerBase._logger.

	The helper method structlog.BoundLoggerBase._proxy_to_logger() that is a DRY [https://en.wikipedia.org/wiki/Don%27t_repeat_yourself] convenience function that runs the processor chain, handles possible DropEvents and calls a named function on _logger.

	You can run the chain by hand though using structlog.BoundLoggerBase._process_event() .

These two methods and one attribute is all you need to write own wrapper classes.

 Performance

Performance

structlog‘s default configuration tries to be as unsurprising and not confusing to new developers as possible.
Some of the choices made come with an avoidable performance price tag – although its impact is debatable.

Here are a few hints how to get most out of structlog in production:

	Use plain dicts as context classes.
Python is full of them and they are highly optimized:

configure(context_class=dict)

If you don’t use automated parsing (you should!) and need predicable order of your keys for some reason, use the key_order argument of KeyValueRenderer.

	Use a specific wrapper class instead of the generic one.
structlog comes with ones for the Standard Library Logging and for Twisted:

configure(wrapper_class=structlog.stdlib.BoundLogger)

Writing own wrapper classes is straightforward too.

	Avoid (frequently) calling log methods on loggers you get back from structlog.wrap_logger() and structlog.get_logger().
Since those functions are usually called in module scope and thus before you are able to configure them, they return a proxy that assembles the correct logger on demand.

Create a local logger if you expect to log frequently without binding:

logger = structlog.get_logger()
def f():
 log = logger.bind()
 for i in range(1000000000):
 log.info('iterated', i=i)

	Set the cache_logger_on_first_use option to True so the aforementioned on-demand loggers will be assembled only once and cached for future uses:

configure(cache_logger_on_first_use=True)

This has the only drawback is that later calls on configure() don’t have any effect on already cached loggers – that shouldn’t matter outside of testing though.

	Use a faster JSON serializer than the standard library.
Possible alternatives are among others simplejson [https://simplejson.readthedocs.io/], UltraJSON [https://github.com/esnme/ultrajson/], or RapidJSON [https://pypi.python.org/pypi/python-rapidjson/] (Python 3 only):

structlog.processors.JSONRenderer(serializer=rapidjson.dumps)

 API Reference

API Reference

Note

The examples here use a very simplified configuration using the minimalistic structlog.processors.KeyValueRenderer for brewity and to enable doctests.
The output is going to be different (nicer!) with default configuration.

structlog Package

	
structlog.get_logger(*args, **initial_values)

	Convenience function that returns a logger according to configuration.

>>> from structlog import get_logger
>>> log = get_logger(y=23)
>>> log.msg("hello", x=42)
y=23 x=42 event='hello'

	Parameters:	
	args – Optional positional arguments that are passed unmodified to
the logger factory. Therefore it depends on the factory what they
mean.

	initial_values – Values that are used to pre-populate your contexts.

	Return type:	A proxy that creates a correctly configured bound logger when
necessary.

See Configuration for details.

If you prefer CamelCase, there’s an alias for your reading pleasure:
structlog.getLogger().

New in version 0.4.0: args

	
structlog.getLogger(*args, **initial_values)

	CamelCase alias for structlog.get_logger().

This function is supposed to be in every source file – we don’t want it to
stick out like a sore thumb in frameworks like Twisted or Zope.

	
structlog.wrap_logger(logger, processors=None, wrapper_class=None, context_class=None, cache_logger_on_first_use=None, logger_factory_args=None, **initial_values)

	Create a new bound logger for an arbitrary logger.

Default values for processors, wrapper_class, and context_class can
be set using configure().

If you set an attribute here, configure() calls have no effect for
the respective attribute.

In other words: selective overwriting of the defaults while keeping some
is possible.

	Parameters:	
	initial_values – Values that are used to pre-populate your contexts.

	logger_factory_args (tuple [https://docs.python.org/3/library/stdtypes.html#tuple]) – Values that are passed unmodified as
*logger_factory_args to the logger factory if not None.

	Return type:	A proxy that creates a correctly configured bound logger when
necessary.

See configure() for the meaning of the rest of the arguments.

New in version 0.4.0: logger_factory_args

	
structlog.configure(processors=None, wrapper_class=None, context_class=None, logger_factory=None, cache_logger_on_first_use=None)

	Configures the global defaults.

They are used if wrap_logger() has been called without arguments.

Also sets the global class attribute is_configured to True on
first call. Can be called several times, keeping an argument at None
leaves is unchanged from the current setting.

Use reset_defaults() to undo your changes.

	Parameters:	
	processors (list [https://docs.python.org/3/library/stdtypes.html#list]) – List of processors.

	wrapper_class (type [https://docs.python.org/3/library/functions.html#type]) – Class to use for wrapping loggers instead of
structlog.BoundLogger. See Standard Library Logging,
Twisted, and Custom Wrappers.

	context_class (type [https://docs.python.org/3/library/functions.html#type]) – Class to be used for internal context keeping.

	logger_factory (callable [https://docs.python.org/3/library/functions.html#callable]) – Factory to be called to create a new
logger that shall be wrapped.

	cache_logger_on_first_use (bool [https://docs.python.org/3/library/functions.html#bool]) – wrap_logger doesn’t return an
actual wrapped logger but a proxy that assembles one when it’s first
used. If this option is set to True, this assembled logger is
cached. See Performance.

New in version 0.3.0: cache_logger_on_first_use

	
structlog.configure_once(*args, **kw)

	Configures iff structlog isn’t configured yet.

It does not matter whether is was configured using configure()
or configure_once() before.

Raises a RuntimeWarning if repeated configuration is attempted.

	
structlog.reset_defaults()

	Resets global default values to builtins.

That means [StackInfoRenderer,
format_exc_info(),
TimeStamper,
ConsoleRenderer] for processors,
BoundLogger for wrapper_class, OrderedDict for
context_class, PrintLoggerFactory for
logger_factory, and False for cache_logger_on_first_use.

Also sets the global class attribute is_configured to False.

	
class structlog.BoundLogger(logger, processors, context)

	A generic BoundLogger that can wrap anything.

Every unknown method will be passed to the wrapped logger. If that’s too
much magic for you, try structlog.stdlib.BoundLogger or
structlog.twisted.BoundLogger which also take advantage of
knowing the wrapped class which generally results in better performance.

Not intended to be instantiated by yourself. See
wrap_logger() and get_logger().

	
bind(**new_values)

	Return a new logger with new_values added to the existing ones.

	Return type:	self.__class__

	
new(**new_values)

	Clear context and binds initial_values using bind().

Only necessary with dict implementations that keep global state like
those wrapped by structlog.threadlocal.wrap_dict() when threads
are re-used.

	Return type:	self.__class__

	
unbind(*keys)

	Return a new logger with keys removed from the context.

	Raises:	KeyError [https://docs.python.org/3/library/exceptions.html#KeyError] – If the key is not part of the context.

	Return type:	self.__class__

	
class structlog.PrintLogger(file=None)

	Print events into a file.

	Parameters:	file (file) – File to print to. (default: stdout)

>>> from structlog import PrintLogger
>>> PrintLogger().msg('hello')
hello

Useful if you just capture your stdout with tools like runit [http://smarden.org/runit/] or if you forward your stderr to syslog [https://hynek.me/articles/taking-some-pain-out-of-python-logging/].

Also very useful for testing and examples since logging is finicky in
doctests.

	
critical(message)

	Print message.

	
debug(message)

	Print message.

	
err(message)

	Print message.

	
error(message)

	Print message.

	
failure(message)

	Print message.

	
info(message)

	Print message.

	
log(message)

	Print message.

	
msg(message)

	Print message.

	
warning(message)

	Print message.

	
class structlog.PrintLoggerFactory(file=None)

	Produce PrintLoggers.

To be used with structlog.configure()‘s logger_factory.

	Parameters:	file (file) – File to print to. (default: stdout)

Positional arguments are silently ignored.

New in version 0.4.0.

	
class structlog.ReturnLogger

	Return the arguments that it’s called with.

>>> from structlog import ReturnLogger
>>> ReturnLogger().msg('hello')
'hello'
>>> ReturnLogger().msg('hello', when='again')
(('hello',), {'when': 'again'})

Useful for unit tests.

Changed in version 0.3.0: Allow for arbitrary arguments and keyword arguments to be passed in.

	
critical(*args, **kw)

	Return tuple of args, kw or just args[0] if only one arg passed

	
debug(*args, **kw)

	Return tuple of args, kw or just args[0] if only one arg passed

	
err(*args, **kw)

	Return tuple of args, kw or just args[0] if only one arg passed

	
error(*args, **kw)

	Return tuple of args, kw or just args[0] if only one arg passed

	
failure(*args, **kw)

	Return tuple of args, kw or just args[0] if only one arg passed

	
info(*args, **kw)

	Return tuple of args, kw or just args[0] if only one arg passed

	
log(*args, **kw)

	Return tuple of args, kw or just args[0] if only one arg passed

	
msg(*args, **kw)

	Return tuple of args, kw or just args[0] if only one arg passed

	
warning(*args, **kw)

	Return tuple of args, kw or just args[0] if only one arg passed

	
class structlog.ReturnLoggerFactory

	Produce and cache ReturnLoggers.

To be used with structlog.configure()‘s logger_factory.

Positional arguments are silently ignored.

New in version 0.4.0.

	
exception structlog.DropEvent

	If raised by an processor, the event gets silently dropped.

Derives from BaseException because it’s technically not an error.

	
class structlog.BoundLoggerBase(logger, processors, context)

	Immutable context carrier.

Doesn’t do any actual logging; examples for useful subclasses are:

	the generic BoundLogger that can wrap anything,

	structlog.twisted.BoundLogger,

	and structlog.stdlib.BoundLogger.

See also Custom Wrappers.

	
_logger = None

	Wrapped logger.

Note

Despite underscore available read-only to custom wrapper classes.

See also Custom Wrappers.

	
_process_event(method_name, event, event_kw)

	Combines creates an event_dict and runs the chain.

Call it to combine your event and context into an event_dict and
process using the processor chain.

	Parameters:	
	method_name (str [https://docs.python.org/3/library/stdtypes.html#str]) – The name of the logger method. Is passed into
the processors.

	event – The event – usually the first positional argument to a
logger.

	event_kw – Additional event keywords. For example if someone
calls log.msg('foo', bar=42), event would to be 'foo'
and event_kw {'bar': 42}.

	Raises:	structlog.DropEvent if log entry should be dropped.

	Raises:	ValueError [https://docs.python.org/3/library/exceptions.html#ValueError] if the final processor doesn’t return a
string, tuple, or a dict.

	Return type:	tuple of (*args, **kw)

Note

Despite underscore available to custom wrapper classes.

See also Custom Wrappers.

Changed in version 14.0.0: Allow final processor to return a dict.

	
_proxy_to_logger(method_name, event=None, **event_kw)

	Run processor chain on event & call method_name on wrapped logger.

DRY convenience method that runs _process_event(), takes care of
handling structlog.DropEvent, and finally calls method_name on
_logger with the result.

	Parameters:	
	method_name (str [https://docs.python.org/3/library/stdtypes.html#str]) – The name of the method that’s going to get
called. Technically it should be identical to the method the
user called because it also get passed into processors.

	event – The event – usually the first positional argument to a
logger.

	event_kw – Additional event keywords. For example if someone
calls log.msg('foo', bar=42), event would to be 'foo'
and event_kw {'bar': 42}.

Note

Despite underscore available to custom wrapper classes.

See also Custom Wrappers.

	
bind(**new_values)

	Return a new logger with new_values added to the existing ones.

	Return type:	self.__class__

	
new(**new_values)

	Clear context and binds initial_values using bind().

Only necessary with dict implementations that keep global state like
those wrapped by structlog.threadlocal.wrap_dict() when threads
are re-used.

	Return type:	self.__class__

	
unbind(*keys)

	Return a new logger with keys removed from the context.

	Raises:	KeyError [https://docs.python.org/3/library/exceptions.html#KeyError] – If the key is not part of the context.

	Return type:	self.__class__

dev Module

Helpers that make development with structlog more pleasant.

	
class structlog.dev.ConsoleRenderer(pad_event=30, colors=True, repr_native_str=False)

	Render event_dict nicely aligned, possibly in colors, and ordered.

	Parameters:	
	pad_event (int [https://docs.python.org/3/library/functions.html#int]) – Pad the event to this many characters.

	colors (bool [https://docs.python.org/3/library/functions.html#bool]) – Use colors for a nicer output.

	repr_native_str (bool [https://docs.python.org/3/library/functions.html#bool]) – When True, repr() [https://docs.python.org/3/library/functions.html#repr] is also applied
to native strings (i.e. unicode on Python 3 and bytes on Python 2).
Setting this to False is useful if you want to have human-readable
non-ASCII output on Python 2. The event key is never
repr() [https://docs.python.org/3/library/functions.html#repr] -ed.

Requires the colorama [https://pypi.org/project/colorama/] package if colors is True.

New in version 16.0.

New in version 16.1: colors

New in version 17.1: repr_native_str

threadlocal Module

Primitives to keep context global but thread (and greenlet) local.

	
structlog.threadlocal.wrap_dict(dict_class)

	Wrap a dict-like class and return the resulting class.

The wrapped class and used to keep global in the current thread.

	Parameters:	dict_class (type [https://docs.python.org/3/library/functions.html#type]) – Class used for keeping context.

	Return type:	type

	
structlog.threadlocal.tmp_bind(logger, **tmp_values)

	Bind tmp_values to logger & memorize current state. Rewind afterwards.

>>> from structlog import wrap_logger, PrintLogger
>>> from structlog.threadlocal import tmp_bind, wrap_dict
>>> logger = wrap_logger(PrintLogger(), context_class=wrap_dict(dict))
>>> with tmp_bind(logger, x=5) as tmp_logger:
... logger = logger.bind(y=3)
... tmp_logger.msg("event")
x=5 y=3 event='event'
>>> logger.msg("event")
event='event'

	
structlog.threadlocal.as_immutable(logger)

	Extract the context from a thread local logger into an immutable logger.

	Parameters:	logger (structlog.BoundLogger) – A logger with possibly thread local
state.

	Return type:	BoundLogger with an immutable context.

processors Module

Processors useful regardless of the logging framework.

	
class structlog.processors.JSONRenderer(serializer=<function dumps>, **dumps_kw)

	Render the event_dict using serializer(event_dict, **json_kw).

	Parameters:	
	json_kw (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – Are passed unmodified to serializer.

	serializer (callable [https://docs.python.org/3/library/functions.html#callable]) – A json.dumps() [https://docs.python.org/3/library/json.html#json.dumps]-compatible callable that
will be used to format the string. This can be used to use alternative
JSON encoders like simplejson [https://pypi.python.org/pypi/simplejson/] or RapidJSON [https://pypi.python.org/pypi/python-rapidjson/] (faster but Python
3-only) (default: json.dumps() [https://docs.python.org/3/library/json.html#json.dumps]).

New in version 0.2.0: Support for __structlog__ serialization method.

New in version 15.4.0: serializer parameter.

>>> from structlog.processors import JSONRenderer
>>> JSONRenderer(sort_keys=True)(None, None, {'a': 42, 'b': [1, 2, 3]})
'{"a": 42, "b": [1, 2, 3]}'

Bound objects are attempted to be serialize using a __structlog__ method.
If none is defined, repr() is used:

>>> class C1(object):
... def __structlog__(self):
... return ['C1!']
... def __repr__(self):
... return '__structlog__ took precedence'
>>> class C2(object):
... def __repr__(self):
... return 'No __structlog__, so this is used.'
>>> from structlog.processors import JSONRenderer
>>> JSONRenderer(sort_keys=True)(None, None, {'c1': C1(), 'c2': C2()})
'{"c1": ["C1!"], "c2": "No __structlog__, so this is used."}'

Please note that additionally to strings, you can also return any type the standard library JSON module knows about – like in this example a list.

	
class structlog.processors.KeyValueRenderer(sort_keys=False, key_order=None, drop_missing=False, repr_native_str=True)

	Render event_dict as a list of Key=repr(Value) pairs.

	Parameters:	
	sort_keys (bool [https://docs.python.org/3/library/functions.html#bool]) – Whether to sort keys when formatting.

	key_order (list [https://docs.python.org/3/library/stdtypes.html#list]) – List of keys that should be rendered in this exact
order. Missing keys will be rendered as None, extra keys depending
on sort_keys and the dict class.

	drop_missing (bool [https://docs.python.org/3/library/functions.html#bool]) – When True, extra keys in key_order will be
dropped rather than rendered as None.

	repr_native_str (bool [https://docs.python.org/3/library/functions.html#bool]) – When True, repr() [https://docs.python.org/3/library/functions.html#repr] is also applied
to native strings (i.e. unicode on Python 3 and bytes on Python 2).
Setting this to False is useful if you want to have human-readable
non-ASCII output on Python 2.

New in version 0.2.0: key_order

New in version 16.1.0: drop_missing

New in version 17.1.0: repr_native_str

>>> from structlog.processors import KeyValueRenderer
>>> KeyValueRenderer(sort_keys=True)(None, None, {'a': 42, 'b': [1, 2, 3]})
'a=42 b=[1, 2, 3]'
>>> KeyValueRenderer(key_order=['b', 'a'])(None, None,
... {'a': 42, 'b': [1, 2, 3]})
'b=[1, 2, 3] a=42'

	
class structlog.processors.UnicodeDecoder(encoding='utf-8', errors='replace')

	Decode byte string values in event_dict.

	Parameters:	
	encoding (str [https://docs.python.org/3/library/stdtypes.html#str]) – Encoding to decode from (default: 'utf-8').

	errors (str [https://docs.python.org/3/library/stdtypes.html#str]) – How to cope with encoding errors (default:
'replace').

Useful if you’re running Python 3 as otherwise b"abc" will be rendered
as 'b"abc"'.

Just put it in the processor chain before the renderer.

New in version 15.4.0.

	
class structlog.processors.UnicodeEncoder(encoding='utf-8', errors='backslashreplace')

	Encode unicode values in event_dict.

	Parameters:	
	encoding (str [https://docs.python.org/3/library/stdtypes.html#str]) – Encoding to encode to (default: 'utf-8').

	errors (str [https://docs.python.org/3/library/stdtypes.html#str]) – How to cope with encoding errors (default
'backslashreplace').

Useful if you’re running Python 2 as otherwise u"abc" will be rendered
as 'u"abc"'.

Just put it in the processor chain before the renderer.

	
structlog.processors.format_exc_info(logger, name, event_dict)

	Replace an exc_info field by an exception string field:

If event_dict contains the key exc_info, there are two possible
behaviors:

	If the value is a tuple, render it into the key exception.

	If the value is an Exception and you’re running Python 3, render it
into the key exception.

	If the value true but no tuple, obtain exc_info ourselves and render
that.

If there is no exc_info key, the event_dict is not touched.
This behavior is analogue to the one of the stdlib’s logging.

>>> from structlog.processors import format_exc_info
>>> try:
... raise ValueError
... except ValueError:
... format_exc_info(None, None, {'exc_info': True})
{'exception': 'Traceback (most recent call last):...

	
class structlog.processors.StackInfoRenderer

	Add stack information with key stack if stack_info is true.

Useful when you want to attach a stack dump to a log entry without
involving an exception.

It works analogously to the stack_info argument of the Python 3 standard
library logging but works on both 2 and 3.

New in version 0.4.0.

	
class structlog.processors.ExceptionPrettyPrinter(file=None)

	Pretty print exceptions and remove them from the event_dict.

	Parameters:	file (file) – Target file for output (default: sys.stdout).

This processor is mostly for development and testing so you can read
exceptions properly formatted.

It behaves like format_exc_info() except it removes the exception
data from the event dictionary after printing it.

It’s tolerant to having format_exc_info in front of itself in the
processor chain but doesn’t require it. In other words, it handles both
exception as well as exc_info keys.

New in version 0.4.0.

Changed in version 16.0.0: Added support for passing exceptions as exc_info on Python 3.

	
class structlog.processors.TimeStamper(fmt=None, utc=True)

	Add a timestamp to event_dict.

Note

You should let OS tools take care of timestamping. See also
Logging Best Practices.

	Parameters:	
	fmt (str [https://docs.python.org/3/library/stdtypes.html#str]) – strftime format string, or "iso" for ISO 8601 [https://en.wikipedia.org/wiki/ISO_8601], or None for a UNIX
timestamp [https://en.wikipedia.org/wiki/Unix_time].

	utc (bool [https://docs.python.org/3/library/functions.html#bool]) – Whether timestamp should be in UTC or local time.

	key (str [https://docs.python.org/3/library/stdtypes.html#str]) – Target key in event_dict for added timestamps.

>>> from structlog.processors import TimeStamper
>>> TimeStamper()(None, None, {})
{'timestamp': 1378994017}
>>> TimeStamper(fmt='iso')(None, None, {})
{'timestamp': '2013-09-12T13:54:26.996778Z'}
>>> TimeStamper(fmt='%Y', key='year')(None, None, {})
{'year': '2013'}

stdlib Module

Processors and helpers specific to the logging [https://docs.python.org/3/library/logging.html#module-logging] module from the Python
standard library [https://docs.python.org/].

See also structlog’s standard library support.

	
class structlog.stdlib.BoundLogger(logger, processors, context)

	Python Standard Library version of structlog.BoundLogger.
Works exactly like the generic one except that it takes advantage of
knowing the logging methods in advance.

Use it like:

structlog.configure(
 wrapper_class=structlog.stdlib.BoundLogger,
)

	
bind(**new_values)

	Return a new logger with new_values added to the existing ones.

	Return type:	self.__class__

	
critical(event=None, *args, **kw)

	Process event and call logging.Logger.critical() [https://docs.python.org/3/library/logging.html#logging.Logger.critical] with the result.

	
debug(event=None, *args, **kw)

	Process event and call logging.Logger.debug() [https://docs.python.org/3/library/logging.html#logging.Logger.debug] with the result.

	
error(event=None, *args, **kw)

	Process event and call logging.Logger.error() [https://docs.python.org/3/library/logging.html#logging.Logger.error] with the result.

	
exception(event=None, *args, **kw)

	Process event and call logging.Logger.error() [https://docs.python.org/3/library/logging.html#logging.Logger.error] with the result,
after setting exc_info to True.

	
info(event=None, *args, **kw)

	Process event and call logging.Logger.info() [https://docs.python.org/3/library/logging.html#logging.Logger.info] with the result.

	
log(level, event, *args, **kw)

	Process event and call the appropriate logging method depending on
level.

	
new(**new_values)

	Clear context and binds initial_values using bind().

Only necessary with dict implementations that keep global state like
those wrapped by structlog.threadlocal.wrap_dict() when threads
are re-used.

	Return type:	self.__class__

	
unbind(*keys)

	Return a new logger with keys removed from the context.

	Raises:	KeyError [https://docs.python.org/3/library/exceptions.html#KeyError] – If the key is not part of the context.

	Return type:	self.__class__

	
warn(event=None, *args, **kw)

	Process event and call logging.Logger.warning() [https://docs.python.org/3/library/logging.html#logging.Logger.warning] with the result.

	
warning(event=None, *args, **kw)

	Process event and call logging.Logger.warning() [https://docs.python.org/3/library/logging.html#logging.Logger.warning] with the result.

	
class structlog.stdlib.LoggerFactory(ignore_frame_names=None)

	Build a standard library logger when an instance is called.

Sets a custom logger using logging.setLoggerClass() [https://docs.python.org/3/library/logging.html#logging.setLoggerClass] so variables in
log format are expanded properly.

>>> from structlog import configure
>>> from structlog.stdlib import LoggerFactory
>>> configure(logger_factory=LoggerFactory())

	Parameters:	ignore_frame_names (list of str) – When guessing the name of a logger, skip frames
whose names start with one of these. For example, in pyramid
applications you’ll want to set it to
['venusian', 'pyramid.config'].

	
__call__(*args)

	Deduce the caller’s module name and create a stdlib logger.

If an optional argument is passed, it will be used as the logger name
instead of guesswork. This optional argument would be passed from the
structlog.get_logger() call. For example
structlog.get_logger('foo') would cause this method to be called
with 'foo' as its first positional argument.

	Return type:	logging.Logger [https://docs.python.org/3/library/logging.html#logging.Logger]

Changed in version 0.4.0: Added support for optional positional arguments. Using the first
one for naming the constructed logger.

	
structlog.stdlib.render_to_log_kwargs(wrapped_logger, method_name, event_dict)

	Render event_dict into keyword arguments for logging.log() [https://docs.python.org/3/library/logging.html#logging.log].

The event field is translated into msg and the rest of the event_dict
is added as extra.

This allows you to defer formatting to logging [https://docs.python.org/3/library/logging.html#module-logging].

New in version 17.1.0.

	
structlog.stdlib.filter_by_level(logger, name, event_dict)

	Check whether logging is configured to accept messages from this log level.

Should be the first processor if stdlib’s filtering by level is used so
possibly expensive processors like exception formatters are avoided in the
first place.

>>> import logging
>>> from structlog.stdlib import filter_by_level
>>> logging.basicConfig(level=logging.WARN)
>>> logger = logging.getLogger()
>>> filter_by_level(logger, 'warn', {})
{}
>>> filter_by_level(logger, 'debug', {})
Traceback (most recent call last):
...
DropEvent

	
structlog.stdlib.add_log_level(logger, method_name, event_dict)

	Add the log level to the event dict.

	
structlog.stdlib.add_logger_name(logger, method_name, event_dict)

	Add the logger name to the event dict.

	
class structlog.stdlib.PositionalArgumentsFormatter(remove_positional_args=True)

	Apply stdlib-like string formatting to the event key.

If the positional_args key in the event dict is set, it must
contain a tuple that is used for formatting (using the %s string
formatting operator) of the value from the event key. This works
in the same way as the stdlib handles arguments to the various log
methods: if the tuple contains only a single dict argument it is
used for keyword placeholders in the event string, otherwise it
will be used for positional placeholders.

positional_args is populated by structlog.stdlib.BoundLogger or
can be set manually.

The remove_positional_args flag can be set to False to keep the
positional_args key in the event dict; by default it will be
removed from the event dict after formatting a message.

	
class structlog.stdlib.ProcessorFormatter(processor, foreign_pre_chain=None, *args, **kwargs)

	Call structlog processors on logging.LogRecords.

This logging.Formatter [https://docs.python.org/3/library/logging.html#logging.Formatter] allows to configure logging [https://docs.python.org/3/library/logging.html#module-logging] to call
processor on structlog-borne log entries (origin is determined solely
on the fact whether the msg field on the logging.LogRecord [https://docs.python.org/3/library/logging.html#logging.LogRecord] is
a dict or not).

This allows for two interesting use cases:

	You can format non-structlog log entries.

	You can multiplex log records into multiple logging.Handlers.

Please refer to Standard Library Logging for examples.

	Parameters:	
	processor (callable [https://docs.python.org/3/library/functions.html#callable]) – A structlog processor.

	foreign_pre_chain – If not None, it is used as an iterable of processors that is applied
to non-structlog log entries before processor. If None,
formatting is left to logging [https://docs.python.org/3/library/logging.html#module-logging]. (default: None)

	Return type:	str [https://docs.python.org/3/library/stdtypes.html#str]

New in version 17.1.0.

	
static wrap_for_formatter(logger, name, event_dict)

	Wrap logger, name, and event_dict.

The result is later unpacked by ProcessorFormatter when
formatting log entries.

Use this static method as the renderer (i.e. final processor) if you
want to use ProcessorFormatter in your logging [https://docs.python.org/3/library/logging.html#module-logging]
configuration.

twisted Module

Processors and tools specific to the Twisted [https://twistedmatrix.com/]
networking engine.

See also structlog’s Twisted support.

	
class structlog.twisted.BoundLogger(logger, processors, context)

	Twisted-specific version of structlog.BoundLogger.

Works exactly like the generic one except that it takes advantage of
knowing the logging methods in advance.

Use it like:

configure(
 wrapper_class=structlog.twisted.BoundLogger,
)

	
bind(**new_values)

	Return a new logger with new_values added to the existing ones.

	Return type:	self.__class__

	
err(event=None, **kw)

	Process event and call log.err() with the result.

	
msg(event=None, **kw)

	Process event and call log.msg() with the result.

	
new(**new_values)

	Clear context and binds initial_values using bind().

Only necessary with dict implementations that keep global state like
those wrapped by structlog.threadlocal.wrap_dict() when threads
are re-used.

	Return type:	self.__class__

	
unbind(*keys)

	Return a new logger with keys removed from the context.

	Raises:	KeyError [https://docs.python.org/3/library/exceptions.html#KeyError] – If the key is not part of the context.

	Return type:	self.__class__

	
class structlog.twisted.LoggerFactory

	Build a Twisted logger when an instance is called.

>>> from structlog import configure
>>> from structlog.twisted import LoggerFactory
>>> configure(logger_factory=LoggerFactory())

	
__call__(*args)

	Positional arguments are silently ignored.

	Rvalue:	A new Twisted logger.

Changed in version 0.4.0: Added support for optional positional arguments.

	
class structlog.twisted.EventAdapter(dictRenderer=None)

	Adapt an event_dict to Twisted logging system.

Particularly, make a wrapped twisted.python.log.err [https://twistedmatrix.com/documents/current/api/twisted.python.log.html#err] behave as expected.

	Parameters:	dictRenderer (callable [https://docs.python.org/3/library/functions.html#callable]) – Renderer that is used for the actual
log message. Please note that structlog comes with a dedicated
JSONRenderer.

Must be the last processor in the chain and requires a dictRenderer
for the actual formatting as an constructor argument in order to be able to
fully support the original behaviors of log.msg() and log.err().

	
class structlog.twisted.JSONRenderer(serializer=<function dumps>, **dumps_kw)

	Behaves like structlog.processors.JSONRenderer except that it
formats tracebacks and failures itself if called with err().

Note

This ultimately means that the messages get logged out using msg(),
and not err() which renders failures in separate lines.

Therefore it will break your tests that contain assertions using
flushLoggedErrors [https://twistedmatrix.com/documents/current/api/twisted.trial.unittest.SynchronousTestCase.html#flushLoggedErrors].

Not an adapter like EventAdapter but a real formatter. Nor does
it require to be adapted using it.

Use together with a JSONLogObserverWrapper-wrapped Twisted logger
like plainJSONStdOutLogger() for pure-JSON logs.

	
structlog.twisted.plainJSONStdOutLogger()

	Return a logger that writes only the message to stdout.

Transforms non-JSONRenderer messages to JSON.

Ideal for JSONifying log entries from Twisted plugins and libraries that
are outside of your control:

$ twistd -n --logger structlog.twisted.plainJSONStdOutLogger web
{"event": "Log opened.", "system": "-"}
{"event": "twistd 13.1.0 (python 2.7.3) starting up.", "system": "-"}
{"event": "reactor class: twisted...EPollReactor.", "system": "-"}
{"event": "Site starting on 8080", "system": "-"}
{"event": "Starting factory <twisted.web.server.Site ...>", ...}
...

Composes PlainFileLogObserver and JSONLogObserverWrapper
to a usable logger.

New in version 0.2.0.

	
structlog.twisted.JSONLogObserverWrapper(observer)

	Wrap a log observer and render non-JSONRenderer entries to JSON.

	Parameters:	observer (ILogObserver) – Twisted log observer to wrap. For example
PlainFileObserver or Twisted’s stock FileLogObserver [https://twistedmatrix.com/documents/current/api/twisted.python.log.FileLogObserver.html]

New in version 0.2.0.

	
class structlog.twisted.PlainFileLogObserver(file)

	Write only the the plain message without timestamps or anything else.

Great to just print JSON to stdout where you catch it with something like
runit.

	Parameters:	file (file) – File to print to.

New in version 0.2.0.

 Backward Compatibility

Backward Compatibility

structlog has a very strong backward compatibility policy that is inspired by the one of the Twisted framework [https://twistedmatrix.com/trac/wiki/CompatibilityPolicy].

Put simply, you shouldn’t ever be afraid to upgrade structlog if you’re using its public APIs.
If there will ever be need to break compatibility, it will be announced in the Changelog and raise deprecation warning for a year before it’s finally really broken.

Warning

You cannot however rely on the default settings and the structlog.dev module.
They may be adjusted in the future to provide a better experience when starting to use structlog.
So please make sure to always properly configure your applications.

 How To Contribute

How To Contribute

First off, thank you for considering contributing to structlog!
It’s people like you who make it is such a great tool for everyone.

This document is mainly to help you to get started by codifying tribal knowledge and expectations and make it more accessible to everyone.
But don’t be afraid to open half-finished PRs and ask questions if something is unclear!

Workflow

	No contribution is too small!
Please submit as many fixes for typos and grammar bloopers as you can!

	Try to limit each pull request to one change only.

	Always add tests and docs for your code.
This is a hard rule; patches with missing tests or documentation can’t be accepted.

	Make sure your changes pass our CI [https://travis-ci.org/hynek/structlog/].
You won’t get any feedback until it’s green unless you ask for it.

	Once you’ve addressed review feedback, make sure to bump the pull request with a short note.
Maintainers don’t receive notifications when you push new commits.

	Don’t break backward compatibility [https://structlog.readthedocs.io/en/latest/backward-compatibility.html].

Code

	Obey PEP 8 [https://www.python.org/dev/peps/pep-0008/] and PEP 257 [https://www.python.org/dev/peps/pep-0257/].
We use the """-on-separate-lines style for docstrings:

def func(x):
 """
 Do something.

 :param str x: A very important parameter.

 :rtype: str
 """

	If you add or change public APIs, tag the docstring using .. versionadded:: 16.0.0 WHAT or .. versionchanged:: 17.1.0 WHAT.

	Prefer double quotes (") over single quotes (') unless the string contains double quotes itself.

Tests

	Write your asserts as expected == actual to line them up nicely:

x = f()

assert 42 == x.some_attribute
assert "foo" == x._a_private_attribute

	To run the test suite, all you need is a recent tox [https://tox.readthedocs.io/].
It will ensure the test suite runs with all dependencies against all Python versions just as it will on Travis CI.
If you lack some Python versions, you can can always limit the environments like tox -e py27,py35 (in that case you may want to look into pyenv [https://github.com/pyenv/pyenv], which makes it very easy to install many different Python versions in parallel).

	Write good test docstrings [https://jml.io/pages/test-docstrings.html].

Documentation

	Use semantic newlines [http://rhodesmill.org/brandon/2012/one-sentence-per-line/] in reStructuredText [http://sphinx-doc.org/rest.html] files (files ending in .rst):

This is a sentence.
This is another sentence.

	If you start a new section, add two blank lines before and one blank line after the header except if two headers follow immediately after each other:

Last line of previous section.

Header of New Top Section

Header of New Section
^^^^^^^^^^^^^^^^^^^^^

First line of new section.

	If your change is noteworthy, add an entry to the changelog [https://github.com/hynek/structlog/blob/master/CHANGELOG.rst].
Use semantic newlines [http://rhodesmill.org/brandon/2012/one-sentence-per-line/], and add a link to your pull request:

- Added ``structlog.func()`` that does foo.
 It's pretty cool.
 [`#1 <https://github.com/hynek/structlog/pull/1>`_]
- ``structlog.func()`` now doesn't crash the Large Hadron Collider anymore.
 That was a nasty bug!
 [`#2 <https://github.com/hynek/structlog/pull/2>`_]

Local Development Environment

You can (and should) run our test suite using tox [https://tox.readthedocs.io/] however you’ll probably want a more traditional environment too.
We highly recommend to develop using the latest Python 3 release because you’re more likely to catch certain bugs earlier.

First create a virtual environment [https://virtualenv.pypa.io/].
It’s out of scope for this document to list all the ways to manage virtual environments in Python but if you don’t have already a pet way, take some time to look at tools like pew [https://github.com/berdario/pew], virtualfish [http://virtualfish.readthedocs.io/], and virtualenvwrapper [http://virtualenvwrapper.readthedocs.io/].

Next get an up to date checkout of the structlog repository:

git checkout git@github.com:hynek/structlog.git

Change into the newly created directory and after activating your virtual environment install an editable version of structlog:

cd structlog
pip install -e .

If you run the virtual environment’s Python and try to import structlog it should work!

To run the test suite, you’ll need our development dependencies which can be installed using

pip install -r dev-requirements.txt

At this point

python -m pytest

should work and pass!

Again, this list is mainly to help you to get started by codifying tribal knowledge and expectations.
If something is unclear, feel free to ask for help!

Please note that this project is released with a Contributor Code of Conduct [https://github.com/hynek/structlog/blob/master/CODE_OF_CONDUCT.rst].
By participating in this project you agree to abide by its terms.
Please report any harm to Hynek Schlawack [https://hynek.me/about/] in any way you find appropriate.

Thank you for considering contributing to structlog!

 License and Hall of Fame

License and Hall of Fame

structlog is licensed both under the Apache License, Version 2 [http://choosealicense.com/licenses/apache/] and the MIT license [http://choosealicense.com/licenses/mit/].

The reason for that is to be both protected against patent claims by own contributors and still allow the usage within GPLv2 software.
For more legal details, see this issue [https://github.com/pyca/cryptography/issues/1209] on the bug tracker of PyCA’s cryptography.

The full license texts can be also found in the source code repository:

	Apache License 2.0 [https://github.com/hynek/structlog/blob/master/LICENSE.apache2]

	MIT [https://github.com/hynek/structlog/blob/master/LICENSE.mit]

Authors

structlog is written and maintained by Hynek Schlawack [https://hynek.me/].
It’s inspired by previous work done by Jean-Paul Calderone [http://as.ynchrono.us/] and David Reid [https://dreid.org/].

The development is kindly supported by Variomedia AG [https://www.variomedia.de/].

A full list of contributors can be found on GitHub’s overview [https://github.com/hynek/structlog/graphs/contributors].
Some of them disapprove of the addition of thread local context data. :)

 Changelog

Changelog

Versions are year-based with a strict backward compatibility policy.
The third digit is only for regressions.

17.1.0 (2017-04-24)

The main features of this release are massive improvements in standard library’s logging integration.
Have a look at the updated standard library chapter [http://www.structlog.org/en/stable/standard-library.html] on how to use them!
Special thanks go to
Fabian Büchler [https://github.com/fabianbuechler],
Gilbert Gilb’s [https://github.com/gilbsgilbs],
Iva Kaneva [https://github.com/if-fi],
insolite [https://github.com/insolite],
and sky-code [https://github.com/sky-code],
that made them possible.

Backward-incompatible changes:

	The default renderer now is structlog.dev.ConsoleRenderer if you don’t configure structlog.
Colors are used if available and human-friendly timestamps are prepended.
This is in line with our backward compatibility policy [http://www.structlog.org/en/stable/backward-compatibility.html] that explicitly excludes default settings.

Changes:

	Added structlog.stdlib.render_to_log_kwargs().
This allows you to use logging-based formatters to take care of rendering your entries.
#98 [https://github.com/hynek/structlog/issues/98]

	Added structlog.stdlib.ProcessorFormatter which does the opposite:
This allows you to run structlog processors on arbitrary logging.LogRecords.
#79 [https://github.com/hynek/structlog/issues/79]
#105 [https://github.com/hynek/structlog/issues/105]

	UNIX epoch timestamps from structlog.processors.TimeStamper are more precise now.

	Added repr_native_str to structlog.processors.KeyValueRenderer and structlog.dev.ConsoleRenderer.
This allows for human-readable non-ASCII output on Python 2 (repr() on Python 2 haves like ascii() on Python 3 in that regard).
As per compatibility policy, it’s on (original behavior) in KeyValueRenderer and off (humand-friendly behavior) in ConsoleRenderer.
#94 [https://github.com/hynek/structlog/issues/94]

	Added colors argument to structlog.dev.ConsoleRenderer and made it the default renderer.
#78 [https://github.com/hynek/structlog/pull/78]

	Fixed bug with Python 3 and structlog.stdlib.BoundLogger.log().
Error log level was not reproductible and was logged as exception one time out of two.
#92 [https://github.com/hynek/structlog/pull/92]

	Positional arguments are now removed even if they are empty.
#82 [https://github.com/hynek/structlog/pull/82]

16.1.0 (2016-05-24)

Backward-incompatible changes:

	Python 3.3 and 2.6 aren’t supported anymore.
They may work by chance but any effort to keep them working has ceased.

The last Python 2.6 release was on October 29, 2013 and isn’t supported by the CPython core team anymore.
Major Python packages like Django and Twisted dropped Python 2.6 a while ago already.

Python 3.3 never had a significant user base and wasn’t part of any distribution’s LTS release.

Changes:

	Add a drop_missing argument to KeyValueRenderer.
If key_order is used and a key is missing a value, it’s not rendered at all instead of being rendered as None.
#67 [https://github.com/hynek/structlog/pull/67]

	Exceptions without a __traceback__ are now also rendered on Python 3.

	Don’t cache loggers in lazy proxies returned from get_logger().
This lead to in-place mutation of them if used before configuration which in turn lead to the problem that configuration was applied only partially to them later.
#72 [https://github.com/hynek/structlog/pull/72]

16.0.0 (2016-01-28)

Changes:

	structlog.processors.ExceptionPrettyPrinter and structlog.processors.format_exc_info now support passing of Exceptions on Python 3.

	Clean up the context when exiting structlog.threadlocal.tmp_bind in case of exceptions.
#64 [https://github.com/hynek/structlog/issues/64]

	Be more more lenient about missing __name__s.
#62 [https://github.com/hynek/structlog/pull/62]

	Add structlog.dev.ConsoleRenderer that renders the event dictionary aligned and with colors.

	Use six [https://pythonhosted.org/six/] for compatibility.

	Add structlog.processors.UnicodeDecoder that will decode all byte string values in an event dictionary to Unicode.

	Add serializer parameter to structlog.processors.JSONRenderer which allows for using different (possibly faster) JSON encoders than the standard library.

15.3.0 (2015-09-25)

Changes:

	Tolerate frames without a __name__, better.
#58 [https://github.com/hynek/structlog/pull/58]

	Officially support Python 3.5.

	Add structlog.ReturnLogger.failure and structlog.PrintLogger.failure as preparation for the new Twisted logging system.

15.2.0 (2015-06-10)

Changes:

	Allow empty lists of processors.
This is a valid use case since #26 [https://github.com/hynek/structlog/issues/26] has been merged.
Before, supplying an empty list resulted in the defaults being used.

	Prevent Twisted’s log.err from quoting strings rendered by structlog.twisted.JSONRenderer.

	Better support of logging.Logger.exception within structlog.
#52 [https://github.com/hynek/structlog/pull/52]

	Add option to specify target key in structlog.processors.TimeStamper processor.
#51 [https://github.com/hynek/structlog/pull/51]

15.1.0 (2015-02-24)

Changes:

	Tolerate frames without a __name__.

15.0.0 (2015-01-23)

Changes:

	Add structlog.stdlib.add_log_level and structlog.stdlib.add_logger_name processors.
#44 [https://github.com/hynek/structlog/pull/44]

	Add structlog.stdlib.BoundLogger.log.
#42 [https://github.com/hynek/structlog/pull/42]

	Pass positional arguments to stdlib wrapped loggers that use string formatting.
#19 [https://github.com/hynek/structlog/pull/19]

	structlog is now dually licensed under the Apache License, Version 2 [http://choosealicense.com/licenses/apache/] and the MIT [http://choosealicense.com/licenses/mit/] license.
Therefore it is now legal to use structlog with GPLv2 [http://choosealicense.com/licenses/gpl-2.0/]-licensed projects.
#28 [https://github.com/hynek/structlog/pull/28]

	Add structlog.stdlib.BoundLogger.exception.
#22 [https://github.com/hynek/structlog/pull/22]

0.4.2 (2014-07-26)

Changes:

	Fixed a memory leak in greenlet code that emulates thread locals.
It shouldn’t matter in practice unless you use multiple wrapped dicts within one program that is rather unlikely.
#8 [https://github.com/hynek/structlog/pull/8]

	structlog.PrintLogger now is thread-safe.

	Test Twisted-related code on Python 3 (with some caveats).

	Drop support for Python 3.2.
There is no justification to add complexity for a Python version that nobody uses.
If you are one of the 0.350% [https://alexgaynor.net/2014/jan/03/pypi-download-statistics/] that use Python 3.2, please stick to the 0.4 branch; critical bugs will still be fixed.

	Officially support Python 3.4.

	Allow final processor to return a dictionary.
See the adapting chapter.
#26 [https://github.com/hynek/structlog/issues/26]

	from structlog import * works now (but you still shouldn’t use it).

0.4.1 (2013-12-19)

Changes:

	Don’t cache proxied methods in structlog.threadlocal._ThreadLocalDictWrapper.
This doesn’t affect regular users.

	Various doc fixes.

0.4.0 (2013-11-10)

Backward-incompatible changes:

Changes:

	Add structlog.processors.StackInfoRenderer for adding stack information to log entries without involving exceptions.
Also added it to default processor chain.
#6 [https://github.com/hynek/structlog/pull/6]

	Allow optional positional arguments for structlog.get_logger that are passed to logger factories.
The standard library factory uses this for explicit logger naming.
#12 [https://github.com/hynek/structlog/pull/12]

	Add structlog.processors.ExceptionPrettyPrinter for development and testing when multiline log entries aren’t just acceptable but even helpful.

	Allow the standard library name guesser to ignore certain frame names.
This is useful together with frameworks.

	Add meta data (e.g. function names, line numbers) extraction for wrapped stdlib loggers.
#5 [https://github.com/hynek/structlog/pull/5]

0.3.2 (2013-09-27)

Changes:

	Fix stdlib’s name guessing.

0.3.1 (2013-09-26)

Changes:

	Add forgotten structlog.processors.TimeStamper to API documentation.

0.3.0 (2013-09-23)

Changes:

	Greatly enhanced and polished the documentation and added a new theme based on Write The Docs, requests, and Flask.

	Add Python Standard Library-specific BoundLogger that has an explicit API instead of intercepting unknown method calls.
See structlog.stdlib.BoundLogger.

	structlog.ReturnLogger now allows arbitrary positional and keyword arguments.

	Add Twisted-specific BoundLogger that has an explicit API instead of intercepting unknown method calls.
See structlog.twisted.BoundLogger.

	Allow logger proxies that are returned by structlog.get_logger and structlog.wrap_logger to cache the BoundLogger they assemble according to configuration on first use.
See the chapter on performance and the cache_logger_on_first_use argument of structlog.configure and structlog.wrap_logger.

	Extract a common base class for loggers that does nothing except keeping the context state.
This makes writing custom loggers much easier and more straight-forward.
See structlog.BoundLoggerBase.

0.2.0 (2013-09-17)

Changes:

	Promote to stable, thus henceforth a strict backward compatibility policy is put into effect.

	Add key_order option to structlog.processors.KeyValueRenderer for more predictable log entries with any dict class.

	structlog.PrintLogger now uses proper I/O routines and is thus viable not only for examples but also for production.

	Enhance Twisted support by offering JSONification of non-structlog log entries.

	Allow for custom serialization in structlog.twisted.JSONRenderer without abusing __repr__.

0.1.0 (2013-09-16)

Initial release.

 Python Module Index

 Python Module Index

 s

 		 	

 		
 s	

 	[image: -]
 	
 structlog	

 	
 	
 structlog.dev	

 	
 	
 structlog.processors	

 	
 	
 structlog.stdlib	

 	
 	
 structlog.threadlocal	

 	
 	
 structlog.twisted	

 Index

Index

 _
 | A
 | B
 | C
 | D
 | E
 | F
 | G
 | I
 | J
 | K
 | L
 | M
 | N
 | P
 | R
 | S
 | T
 | U
 | W

_

 	
 	__call__() (structlog.stdlib.LoggerFactory method)

 	(structlog.twisted.LoggerFactory method)

 	
 	_logger (structlog.BoundLoggerBase attribute)

 	_process_event() (structlog.BoundLoggerBase method)

 	_proxy_to_logger() (structlog.BoundLoggerBase method)

A

 	
 	add_log_level() (in module structlog.stdlib)

 	
 	add_logger_name() (in module structlog.stdlib)

 	as_immutable() (in module structlog.threadlocal)

B

 	
 	bind() (structlog.BoundLogger method)

 	(structlog.BoundLoggerBase method)

 	(structlog.stdlib.BoundLogger method)

 	(structlog.twisted.BoundLogger method)

 	
 	BoundLogger (class in structlog)

 	(class in structlog.stdlib)

 	(class in structlog.twisted)

 	BoundLoggerBase (class in structlog)

C

 	
 	configure() (in module structlog)

 	configure_once() (in module structlog)

 	ConsoleRenderer (class in structlog.dev)

 	
 	critical() (structlog.PrintLogger method)

 	(structlog.ReturnLogger method)

 	(structlog.stdlib.BoundLogger method)

D

 	
 	debug() (structlog.PrintLogger method)

 	(structlog.ReturnLogger method)

 	(structlog.stdlib.BoundLogger method)

 	
 	DropEvent

E

 	
 	err() (structlog.PrintLogger method)

 	(structlog.ReturnLogger method)

 	(structlog.twisted.BoundLogger method)

 	error() (structlog.PrintLogger method)

 	(structlog.ReturnLogger method)

 	(structlog.stdlib.BoundLogger method)

 	
 	EventAdapter (class in structlog.twisted)

 	exception() (structlog.stdlib.BoundLogger method)

 	ExceptionPrettyPrinter (class in structlog.processors)

F

 	
 	failure() (structlog.PrintLogger method)

 	(structlog.ReturnLogger method)

 	
 	filter_by_level() (in module structlog.stdlib)

 	format_exc_info() (in module structlog.processors)

G

 	
 	get_logger() (in module structlog)

 	
 	getLogger() (in module structlog)

I

 	
 	info() (structlog.PrintLogger method)

 	(structlog.ReturnLogger method)

 	(structlog.stdlib.BoundLogger method)

J

 	
 	JSONLogObserverWrapper() (in module structlog.twisted)

 	
 	JSONRenderer (class in structlog.processors)

 	(class in structlog.twisted)

K

 	
 	KeyValueRenderer (class in structlog.processors)

L

 	
 	log() (structlog.PrintLogger method)

 	(structlog.ReturnLogger method)

 	(structlog.stdlib.BoundLogger method)

 	
 	LoggerFactory (class in structlog.stdlib)

 	(class in structlog.twisted)

M

 	
 	msg() (structlog.PrintLogger method)

 	(structlog.ReturnLogger method)

 	(structlog.twisted.BoundLogger method)

N

 	
 	new() (structlog.BoundLogger method)

 	(structlog.BoundLoggerBase method)

 	(structlog.stdlib.BoundLogger method)

 	(structlog.twisted.BoundLogger method)

P

 	
 	PlainFileLogObserver (class in structlog.twisted)

 	plainJSONStdOutLogger() (in module structlog.twisted)

 	PositionalArgumentsFormatter (class in structlog.stdlib)

 	
 	PrintLogger (class in structlog)

 	PrintLoggerFactory (class in structlog)

 	ProcessorFormatter (class in structlog.stdlib)

R

 	
 	render_to_log_kwargs() (in module structlog.stdlib)

 	reset_defaults() (in module structlog)

 	
 	ReturnLogger (class in structlog)

 	ReturnLoggerFactory (class in structlog)

S

 	
 	StackInfoRenderer (class in structlog.processors)

 	structlog (module)

 	structlog.dev (module)

 	
 	structlog.processors (module)

 	structlog.stdlib (module)

 	structlog.threadlocal (module)

 	structlog.twisted (module)

T

 	
 	TimeStamper (class in structlog.processors)

 	
 	tmp_bind() (in module structlog.threadlocal)

U

 	
 	unbind() (structlog.BoundLogger method)

 	(structlog.BoundLoggerBase method)

 	(structlog.stdlib.BoundLogger method)

 	(structlog.twisted.BoundLogger method)

 	
 	UnicodeDecoder (class in structlog.processors)

 	UnicodeEncoder (class in structlog.processors)

W

 	
 	warn() (structlog.stdlib.BoundLogger method)

 	warning() (structlog.PrintLogger method)

 	(structlog.ReturnLogger method)

 	(structlog.stdlib.BoundLogger method)

 	
 	wrap_dict() (in module structlog.threadlocal)

 	wrap_for_formatter() (structlog.stdlib.ProcessorFormatter static method)

 	wrap_logger() (in module structlog)

_static/plus.png

_static/ajax-loader.gif

_static/down.png

_static/up.png

_static/console_renderer.png
JPL5-12718 1901540 [debug] debugging is hard [some_logger] a_list=['1", '2']
2015-12-19 19:13.45 [info 1 informative! [some_logger] some_key='some value'
2615-12-19 19:13.45 [warning] uhuh! [some_logger]

2015-12-19 19:13.45 [error] omg [some_logger] a_dict={'a’

42, 'b'

*fo0'}

2015-12-19 19:13.45 [critical] wef [some_logger] what=SomeClass(x=1, y='z')
2615-12-19 19:13.45 [error] poor me [another_logger]
Stack (most recent call last):
File "t.py", line 43, in <module>
12.exception("poor me", stack_info=True)

Traceback (most recent call last):
File "t.py", line 41, in <module>
o/0
ZeroDivisionError: division by zero
26015-12-19 19:13.45 [info 1 all better now [some_logger]
Stack (most recent call last):
File "t.py", line 44, in <module>
1.info("all better now", stack.

nfo=True)

_static/down-pressed.png

_static/up-pressed.png

nav.xhtml

 Table of Contents

 		Structured Logging for Python

 		Why…

 		…Structured Logging?

 		…structlog?

 		Getting Started

 		Installation

 		Your First Log Entry

 		Building a Context

 		structlog and Standard Library's logging

 		Liked what you saw?

 		Loggers

 		Bound Loggers

 		Printing and Testing

 		Configuration

 		Global Defaults

 		Logger Factories

 		Where to Configure

 		Thread Local Context

 		Immutability

 		Wrapped Dicts

 		Downsides & Caveats

 		Processors

 		Chains

 		Examples

 		Filtering

 		Adapting and Rendering

 		Examples

 		Third Party Packages

 		Examples

 		Flask and Thread Local Data

 		Twisted, and Logging Out Objects

 		Processors

 		Development

 		Standard Library Logging

 		Concrete Bound Logger

 		Processors

 		Suggested Configurations

 		Rendering Using logging-based Formatters

 		Rendering Using structlog-based Formatters Within logging

 		Rendering Within structlog

 		Twisted

 		Concrete Bound Logger

 		Processors

 		Bending Foreign Logging To Your Will

 		Suggested Configuration

 		Logging Best Practices

 		Common Ideas

 		runit

 		Local Logging

 		Syslog

 		runit's svlogd

 		Centralized Logging

 		Syslog (Again!)

 		Logstash with logstash-forwarder

 		Graylog2

 		Custom Wrappers

 		Example

 		Performance

 		API Reference

 		structlog Package

 		dev Module

 		threadlocal Module

 		processors Module

 		stdlib Module

 		twisted Module

 		Backward Compatibility

 		How To Contribute

 		Workflow

 		Code

 		Tests

 		Documentation

 		Local Development Environment

 		License and Hall of Fame

 		Authors

 		Changelog

 		17.1.0 (2017-04-24)

 		Backward-incompatible changes:

 		Changes:

 		16.1.0 (2016-05-24)

 		Backward-incompatible changes:

 		Changes:

 		16.0.0 (2016-01-28)

 		Changes:

 		15.3.0 (2015-09-25)

 		Changes:

 		15.2.0 (2015-06-10)

 		Changes:

 		15.1.0 (2015-02-24)

 		Changes:

 		15.0.0 (2015-01-23)

 		Changes:

 		0.4.2 (2014-07-26)

 		Changes:

