
structlog Documentation
Release

Author

November 10, 2013

Contents

i

ii

structlog Documentation, Release

Release v0.4.0 (What’s new?).

structlog makes structured logging in Python easy by augmenting your existing logger. It allows you to split your log
entries up into key/value pairs and build them incrementally without annoying boilerplate code.

It’s licensed under Apache License, version 2, available from PyPI, the source code can be found on GitHub, the
documentation at http://www.structlog.org/.

structlog targets Python 2.6, 2.7, 3.2, 3.3, and PyPy with no additional dependencies for core functionality.

If you need any help, visit us on #structlog on Freenode!

Contents 1

http://choosealicense.com/licenses/apache/
https://pypi.python.org/pypi/structlog/
https://github.com/hynek/structlog
http://www.structlog.org
http://freenode.net

structlog Documentation, Release

2 Contents

CHAPTER 1

The Pitch

structlog makes structured logging with incremental context building and arbitrary formatting as easy as:

>>> from structlog import get_logger
>>> log = get_logger()
>>> log = log.bind(user=’anonymous’, some_key=23)
>>> log = log.bind(user=’hynek’, another_key=42)
>>> log.info(’user.logged_in’, happy=True)
some_key=23 user=’hynek’ another_key=42 happy=True event=’user.logged_in’

For. . .

• . . . reasons why structured logging in general and structlog in particular are the way to go, consult Why. . . .

• . . . more realistic examples, peek into Examples.

• . . . getting started right away, jump straight into Getting Started.

Since structlog avoids monkey-patching and events are fully free-form, you can start using it today!

3

structlog Documentation, Release

4 Chapter 1. The Pitch

CHAPTER 2

User’s Guide

2.1 Basics

2.1.1 Why. . .

. . . Structured Logging?

I believe the widespread use of format strings in logging is based on two presumptions:

• The first level consumer of a log message is a human.

• The programmer knows what information is needed to debug an issue.

I believe these presumptions are no longer correct in server side software.

—Paul Querna

Structured logging means that you don’t write hard-to-parse and hard-to-keep-consistent prose in your logs but that
you log events that happen in a context instead.

. . . structlog?

Because it’s easy and you don’t have to replace your underlying logger – you just add structure to your log entries and
format them to strings before they hit your real loggers.

structlog supports you with building your context as you go (e.g. if a user logs in, you bind their user name to your
current logger) and log events when they happen (i.e. the user does something log-worthy):

>>> from structlog import get_logger
>>> log = get_logger()
>>> log = log.bind(user=’anonymous’, some_key=23)
>>> log = log.bind(user=’hynek’, another_key=42)
>>> log.info(’user.logged_in’, happy=True)
some_key=23 user=’hynek’ another_key=42 happy=True event=’user.logged_in’

This ability to bind key/values pairs to a logger frees you from using conditionals, closures, or boilerplate methods to
log out all relevant data.

Additionally, structlog offers you a flexible way to filter and modify your log entries using so called processors before
the entry is passed to your real logger. The possibilities include logging in JSON, adding arbitrary meta data

5

https://journal.paul.querna.org/articles/2011/12/26/log-for-machines-in-json/

structlog Documentation, Release

like timestamps, counting events as metrics, or dropping log entries caused by your monitoring system. structlog
is also flexible enough to allow transparent thread local storage for your context if you don’t like the idea of local
bindings as in the example above.

2.1.2 Getting Started

Installation

structlog can be easily installed using:

$ pip install structlog

Python 2.6

If you’re running Python 2.6 and want to use OrderedDicts for your context (which is the default), you also have
to install the respective compatibility package:

$ pip install ordereddict

If the order of the keys of your context doesn’t matter (e.g. if you’re logging JSON that gets parsed anyway), simply
use a vanilla dict to avoid this dependency. See Configuration on how to achieve that.

Your First Log Entry

A lot of effort went into making structlog accessible without reading pages of documentation. And indeed, the simplest
possible usage looks like this:

>>> import structlog
>>> log = structlog.get_logger()
>>> log.msg(’greeted’, whom=’world’, more_than_a_string=[1, 2, 3])
whom=’world’ more_than_a_string=[1, 2, 3] event=’greeted’

Here, structlog takes full advantage of its hopefully useful default settings:

• Output is sent to standard out instead of exploding into the user’s face. Yes, that seems a rather controversial
attitude towards logging.

• All keywords are formatted using structlog.processors.KeyValueRenderer. That in turn uses
repr() to serialize all values to strings. Thus, it’s easy to add support for logging of your own objects1.

It should be noted that even in most complex logging setups the example would still look just like that thanks to
Configuration.

There you go, structured logging! However, this alone wouldn’t warrant its own package. After all, there’s even a
recipe on structured logging for the standard library. So let’s go a step further.

Building a Context

Imagine a hypothetical web application that wants to log out all relevant data with just the API from above:

1 In production, you’re more likely to use JSONRenderer that can also be customized using a __structlog__ method so you don’t have
to change your repr methods to something they weren’t originally intended for.

6 Chapter 2. User’s Guide

http://en.wikipedia.org/wiki/Standard_out#Standard_output_.28stdout.29
http://docs.python.org/2/reference/datamodel.html#object.__repr__
http://docs.python.org/2/howto/logging-cookbook.html

structlog Documentation, Release

from structlog import get_logger

log = get_logger()

def view(request):
user_agent = request.get(’HTTP_USER_AGENT’, ’UNKNOWN’)
peer_ip = request.client_addr
if something:

log.msg(’something’, user_agent=user_agent, peer_ip=peer_ip)
return ’something’

elif something_else:
log.msg(’something_else’, user_agent=user_agent, peer_ip=peer_ip)
return ’something_else’

else:
log.msg(’else’, user_agent=user_agent, peer_ip=peer_ip)
return ’else’

The calls themselves are nice and straight to the point, however you’re repeating yourself all over the place. At this
point, you’ll be tempted to write a closure like

def log_closure(event):
log.msg(event, user_agent=user_agent, peer_ip=peer_ip)

inside of the view. Problem solved? Not quite. What if the parameters are introduced step by step? Do you really
want to have a logging closure in each of your views?

Let’s have a look at a better approach:

from structlog import get_logger

logger = get_logger()

def view(request):
log = logger.bind(

user_agent=request.get(’HTTP_USER_AGENT’, ’UNKNOWN’),
peer_ip=request.client_addr,

)
foo = request.get(’foo’)
if foo:

log = log.bind(foo=foo)
if something:

log.msg(’something’)
return ’something’

elif something_else:
log.msg(’something_else’)
return ’something_else’

else:
log.msg(’else’)
return ’else’

Suddenly your logger becomes your closure!

For structlog, a log entry is just a dictionary called event dict[ionary]:

• You can pre-build a part of the dictionary step by step. These pre-saved values are called the context.

• As soon as an event happens – which is a dictionary too – it is merged together with the context to an event dict
and logged out.

2.1. Basics 7

structlog Documentation, Release

• To keep as much order of the keys as possible, an OrderedDict is used for the context by default.

• The recommended way of binding values is the one in these examples: creating new loggers with a new context.
If you’re okay with giving up immutable local state for convenience, you can also use thread/greenlet local
storage for the context.

structlog and Standard Library’s logging

structlog’s primary application isn’t printing though. Instead, it’s intended to wrap your existing loggers and add
structure and incremental context building to them. For that, structlog is completely agnostic of your underlying
logger – you can use it with any logger you like.

The most prominent example of such an ‘existing logger’ is without doubt the logging module in the standard library.
To make this common case as simple as possible, structlog comes with some tools to help you:

>>> import logging
>>> logging.basicConfig()
>>> from structlog import get_logger, configure
>>> from structlog.stdlib import LoggerFactory
>>> configure(logger_factory=LoggerFactory())
>>> log = get_logger()
>>> log.warn(’it works!’, difficulty=’easy’)
WARNING:structlog...:difficulty=’easy’ event=’it works!’

In other words, you tell structlog that you would like to use the standard library logger factory and keep calling
get_logger() like before.

Since structlog is mainly used together with standard library’s logging, there’s more goodness to make it as fast and
convenient as possible.

Liked what you saw?

Now you’re all set for the rest of the user’s guide. If you want to see more code, make sure to check out the Examples!

2.1.3 Loggers

Bound Loggers

The center of structlog is the immutable log wrapper BoundLogger.

All it does is:

• Keeping a context dictionary and a logger that it’s wrapping,

• recreating itself with (optional) additional context data (the bind() and new() methods),

• recreating itself with less data (unbind()),

• and finally relaying all other method calls to the wrapped logger2 after processing the log entry with the config-
ured chain of processors.

You won’t be instantiating it yourself though. For that there is the structlog.wrap_logger() function (or the
convenience function structlog.get_logger() we’ll discuss in a minute):

2 Since this is slightly magicy, structlog comes with concrete loggers for the Python Standard Library and Twisted that offer you explicit APIs
for the supported logging methods but behave identically like the generic BoundLogger otherwise.

8 Chapter 2. User’s Guide

http://docs.python.org/2/library/collections.html#collections.OrderedDict

structlog Documentation, Release

>>> from structlog import wrap_logger
>>> class PrintLogger(object):
... def msg(self, message):
... print message
>>> def proc(logger, method_name, event_dict):
... print ’I got called with’, event_dict
... return repr(event_dict)
>>> log = wrap_logger(PrintLogger(), processors=[proc], context_class=dict)
>>> log2 = log.bind(x=42)
>>> log == log2
False
>>> log.msg(’hello world’)
I got called with {’event’: ’hello world’}
{’event’: ’hello world’}
>>> log2.msg(’hello world’)
I got called with {’x’: 42, ’event’: ’hello world’}
{’x’: 42, ’event’: ’hello world’}
>>> log3 = log2.unbind(’x’)
>>> log == log3
True
>>> log3.msg(’nothing bound anymore’, foo=’but you can structure the event too’)
I got called with {’foo’: ’but you can structure the event too’, ’event’: ’nothing bound anymore’}
{’foo’: ’but you can structure the event too’, ’event’: ’nothing bound anymore’}

As you can see, it accepts one mandatory and a few optional arguments:

logger The one an only positional argument is the logger that you want to wrap and to which the log entries will be
proxied. If you wish to use a configured logger factory, set it to None.

processors A list of callables that can filter, mutate, and format the log entry before it gets passed to the wrapped
logger.

Default is [format_exc_info(), KeyValueRenderer].

context_class The class to save your context in. Particularly useful for thread local context storage.

Default is OrderedDict.

Additionally, the following arguments are allowed too:

wrapper_class A class to use instead of BoundLogger for wrapping. This is useful if you want to sub-class
BoundLogger and add custom logging methods. BoundLogger’s bind/new methods are sub-classing friendly so
you won’t have to re-implement them. Please refer to the related example how this may look like.

initial_values The values that new wrapped loggers are automatically constructed with. Useful for example if you
want to have the module name as part of the context.

Note: Free your mind from the preconception that log entries have to be serialized to strings eventually. All structlog
cares about is a dictionary of keys and values. What happens to it depends on the logger you wrap and your processors
alone.

This gives you the power to log directly to databases, log aggregation servers, web services, and whatnot.

Printing and Testing

To save you the hassle of using standard library logging for simple standard out logging, structlog ships a
PrintLogger that can log into arbitrary files – including standard out (which is the default if no file is passed
into the constructor):

2.1. Basics 9

http://docs.python.org/2/library/collections.html#collections.OrderedDict

structlog Documentation, Release

>>> from structlog import PrintLogger
>>> PrintLogger().info(’hello world!’)
hello world!

It’s handy for both examples and in combination with tools like runit or stdout/stderr-forwarding.

Additionally – mostly for unit testing – structlog also ships with a logger that just returns whatever it gets passed into
it: ReturnLogger.

>>> from structlog import ReturnLogger
>>> ReturnLogger().msg(42) == 42
True
>>> obj = [’hi’]
>>> ReturnLogger().msg(obj) is obj
True
>>> ReturnLogger().msg(’hello’, when=’again’)
((’hello’,), {’when’: ’again’})

2.1.4 Configuration

Global Defaults

To make logging as unintrusive and straight-forward to use as possible, structlog comes with a plethora of con-
figuration options and convenience functions. Let me start at the end and introduce you to the ultimate conve-
nience function that relies purely on configuration: structlog.get_logger() (and its Twisted-friendly alias
structlog.getLogger()).

The goal is to reduce your per-file logging boilerplate to:

from structlog.stdlib import get_logger
logger = get_logger()

while still giving you the full power via configuration.

To achieve that you’ll have to call structlog.configure() on app initialization (of course, only if you’re not
content with the defaults). The previous example could thus have been written as following:

>>> configure(processors=[proc], context_class=dict)
>>> log = wrap_logger(PrintLogger())
>>> log.msg(’hello world’)
I got called with {’event’: ’hello world’}
{’event’: ’hello world’}

In fact, it could even be written like

>>> configure(processors=[proc], context_class=dict)
>>> log = get_logger()
>>> log.msg(’hello world’)
I got called with {’event’: ’hello world’}
{’event’: ’hello world’}

because PrintLogger is the default LoggerFactory used (see Logger Factories).

structlog tries to behave in the least surprising way when it comes to handling defaults and configuration:

1. Arguments passed to structlog.wrap_logger() always take the highest precedence over configuration.
That means that you can overwrite whatever you’ve configured for each logger respectively.

10 Chapter 2. User’s Guide

http://smarden.org/runit/
http://hynek.me/articles/taking-some-pain-out-of-python-logging/

structlog Documentation, Release

2. If you leave them on None, structlog will check whether you’ve configured default values using
structlog.configure() and uses them if so.

3. If you haven’t configured or passed anything at all, the default fallback values are used which means Ordered-
Dict for context and [StackInfoRenderer, format_exc_info(), KeyValueRenderer] for the
processor chain, and False for cache_logger_on_first_use.

If necessary, you can always reset your global configuration back to default values using
structlog.reset_defaults(). That can be handy in tests.

Note: Since you will call structlog.wrap_logger() (or one of the get_logger() functions) most likely
at import time and thus before you had a chance to configure structlog, they return a proxy that returns a correct
wrapped logger on first bind()/new().

Therefore, you must not call new() or bind() in module scope! Use get_logger()‘s initial_values to
achieve pre-populated contexts.

To enable you to log with the module-global logger, it will create a temporary BoundLogger and relay the log calls
to it on each call. Therefore if you have nothing to bind but intend to do lots of log calls in a function, it makes
sense performance-wise to create a local logger by calling bind() or new() without any parameters. See also
Performance.

Logger Factories

To make structlog.get_logger() work, one needs one more option that hasn’t been discussed yet:
logger_factory.

It is a callable that returns the logger that gets wrapped and returned. In the simplest case, it’s a function that returns
a logger – or just a class. But you can also pass in an instance of a class with a __call__ method for more
complicated setups. New in version 0.4.0: structlog.get_logger() can optionally take positional parameters.
These will be passed to the logger factories. For example, if you use run structlog.get_logger(’a name’)
and configure structlog to use the standard library LoggerFactory which has support for positional parameters, the
returned logger will have the name ’a name’.

When writing custom logger factories, they should always accept positional parameters even if they don’t use them.
That makes sure that loggers are interchangeable.

For the common cases of standard library logging and Twisted logging, structlog comes with two factories built right
in:

• structlog.stdlib.LoggerFactory

• structlog.twisted.LoggerFactory

So all it takes to use structlog with standard library logging is this:

>>> from structlog import get_logger, configure
>>> from structlog.stdlib import LoggerFactory
>>> configure(logger_factory=LoggerFactory())
>>> log = get_logger()
>>> log.critical(’this is too easy!’)
event=’this is too easy!’

By using structlog’s structlog.stdlib.LoggerFactory, it is also ensured that variables like function names
and line numbers are expanded correctly in your log format.

The Twisted example shows how easy it is for Twisted.

2.1. Basics 11

http://docs.python.org/2/library/collections.html#collections.OrderedDict
http://docs.python.org/2/library/collections.html#collections.OrderedDict

structlog Documentation, Release

Note: LoggerFactory()-style factories always need to get passed as instances like in the examples above. While
neither allows for customization using parameters yet, they may do so in the future.

Calling structlog.get_logger() without configuration gives you a perfectly useful
structlog.PrintLogger with the default values exaplained above. I don’t believe silent loggers are a
sensible default.

Where to Configure

The best place to perform your configuration varies with applications and frameworks. Ideally as late as possible but
before non-framework (i.e. your) code is executed. If you use standard library’s logging, it makes sense to configure
them next to each other.

Django Django has to date unfortunately no concept of an application assembler or “app is done” hooks. Therefore
the bottom of your settings.py will have to do.

Flask See Logging Application Errors.

Pyramid Application constructor.

Twisted The plugin definition is the best place. If your app is not a plugin, put it into your tac file (and then learn
about plugins).

If you have no choice but have to configure on import time in module-global scope, or can’t rule out
for other reasons that that your structlog.configure() gets called more than once, structlog offers
structlog.configure_once() that raises a warning if structlog has been configured before (no matter whether
using structlog.configure() or configure_once()) but doesn’t change anything.

2.1.5 Thread Local Context

Immutability

You should call some functions with some arguments.

—David Reid

The behavior of copying itself, adding new values, and returning the result is useful for applications that keep somehow
their own context using classes or closures. Twisted is a fine example for that. Another possible approach is passing
wrapped loggers around or log only within your view where you gather errors and events using return codes and
exceptions. If you are willing to do that, you should stick to it because immutable state is a very good thing3. Sooner
or later, global state and mutable data lead to unpleasant surprises.

However, in the case of conventional web development, we realize that passing loggers around seems rather cumber-
some, intrusive, and generally against the mainstream culture. And since it’s more important that people actually use
structlog than to be pure and snobby, structlog contains a dirty but convenient trick: thread local context storage which
you may already know from Flask:

Thread local storage makes your logger’s context global but only within the current thread4. In the case of web
frameworks this usually means that your context becomes global to the current request.

The following explanations may sound a bit confusing at first but the Flask example illustrates how simple and elegant
this works in practice.

3 In the spirit of Python’s ‘consenting adults’, structlog doesn’t enforce the immutability with technical means. However, if you don’t meddle
with undocumented data, the objects can be safely considered immutable.

4 Special care has been taken to detect and support greenlets properly.

12 Chapter 2. User’s Guide

http://flask.pocoo.org/docs/errorhandling/
http://docs.pylonsproject.org/projects/pyramid/en/latest/narr/startup.html#the-startup-process
http://twistedmatrix.com/documents/current/core/howto/plugin.html
http://twistedmatrix.com/documents/current/core/howto/application.html
https://bitbucket.org/jerub/twisted-plugin-example
http://en.wikipedia.org/wiki/Immutable_object
http://flask.pocoo.org/docs/design/#thread-locals

structlog Documentation, Release

Wrapped Dicts

In order to make your context thread local, structlog ships with a function that can wrap any dict-like class to make it
usable for thread local storage: structlog.threadlocal.wrap_dict().

Within one thread, every instance of the returned class will have a common instance of the wrapped dict-like class:

>>> from structlog.threadlocal import wrap_dict
>>> WrappedDictClass = wrap_dict(dict)
>>> d1 = WrappedDictClass({’a’: 1})
>>> d2 = WrappedDictClass({’b’: 2})
>>> d3 = WrappedDictClass()
>>> d3[’c’] = 3
>>> d1 is d3
False
>>> d1 == d2 == d3 == WrappedDictClass()
True
>>> d3
<WrappedDict-...({’a’: 1, ’c’: 3, ’b’: 2})>

Then use an instance of the generated class as the context class:

configure(context_class=WrappedDictClass())

Note: Remember: the instance of the class doesn’t matter. Only the class type matters because all instances of one
class share the same data.

structlog.threadlocal.wrap_dict() returns always a completely new wrapped class:

>>> from structlog.threadlocal import wrap_dict
>>> WrappedDictClass = wrap_dict(dict)
>>> AnotherWrappedDictClass = wrap_dict(dict)
>>> WrappedDictClass() != AnotherWrappedDictClass()
True
>>> WrappedDictClass.__name__
WrappedDict-41e8382d-bee5-430e-ad7d-133c844695cc
>>> AnotherWrappedDictClass.__name__
WrappedDict-e0fc330e-e5eb-42ee-bcec-ffd7bd09ad09

In order to be able to bind values temporarily to a logger, structlog.threadlocal comes with a context man-
ager: tmp_bind():

>>> log.bind(x=42)
<BoundLogger(context=<WrappedDict-...({’x’: 42})>, ...)>
>>> log.msg(’event!’)
x=42 event=’event!’
>>> with tmp_bind(log, x=23, y=’foo’) as tmp_log:
... tmp_log.msg(’another event!’)
y=’foo’ x=23 event=’another event!’
>>> log.msg(’one last event!’)
x=42 event=’one last event!’

The state before the with statement is saved and restored once it’s left.

If you want to detach a logger from thread local data, there’s structlog.threadlocal.as_immutable().

2.1. Basics 13

http://docs.python.org/2/library/stdtypes.html#context-manager-types
http://docs.python.org/2/library/stdtypes.html#context-manager-types

structlog Documentation, Release

Downsides & Caveats

The convenience of having a thread local context comes at a price though:

Warning:
• If you can’t rule out that your application re-uses threads, you must remember to initialize your thread

local context at the start of each request using new() (instead of bind()). Otherwise you may start a new
request with the context still filled with data from the request before.

• Don’t stop assigning the results of your bind()s and new()s!
Do:

log = log.new(y=23)
log = log.bind(x=42)

Don’t:

log.new(y=23)
log.bind(x=42)

Although the state is saved in a global data structure, you still need the global wrapped logger produce a
real bound logger. Otherwise each log call will result in an instantiation of a temporary BoundLogger. See
Configuration for more details.

The general sentiment against thread locals is that they’re hard to test. In this case we feel like this is an acceptable
trade-off. You can easily write deterministic tests using a call-capturing processor if you use the API properly (cf.
warning above).

This big red box is also what separates immutable local from mutable global data.

2.1.6 Processors

The true power of structlog lies in its combinable log processors. A log processor is a regular callable, i.e. a
function or an instance of a class with a __call__() method.

Chains

The processor chain is a list of processors. Each processors receives three positional arguments:

logger Your wrapped logger object. For example logging.Logger.

method_name The name of the wrapped method. If you called log.warn(’foo’), it will be "warn".

event_dict Current context together with the current event. If the context was {’a’: 42} and the event is "foo",
the initial event_dict will be {’a’:42, ’event’: ’foo’}.

The return value of each processor is passed on to the next one as event_dict until finally the return value of the
last processor gets passed into the wrapped logging method.

Examples

If you set up your logger like:

from structlog import BoundLogger, PrintLogger
wrapped_logger = PrintLogger()

14 Chapter 2. User’s Guide

http://docs.python.org/2/library/logging.html#logging.Logger

structlog Documentation, Release

logger = BoundLogger.wrap(wrapped_logger, processors=[f1, f2, f3, f4])
log = logger.new(x=42)

and call log.msg(’some_event’, y=23), it results in the following call chain:

wrapped_logger.msg(
f4(wrapped_logger, ’msg’,

f3(wrapped_logger, ’msg’,
f2(wrapped_logger, ’msg’,

f1(wrapped_logger, ’msg’, {’event’: ’some_event’, ’x’: 42, ’y’: 23})
)

)
)

)

In this case, f4 has to make sure it returns something wrapped_logger.msg can handle (see Adapting and Ren-
dering).

The simplest modification a processor can make is adding new values to the event_dict. Parsing human-readable
timestamps is tedious, not so UNIX timestamps – let’s add one to each log entry!

import calendar
import time

def timestamper(logger, log_method, event_dict):
event_dict[’timestamp’] = calendar.timegm(time.gmtime())
return event_dict

Easy, isn’t it? Please note, that structlog comes with such an processor built in: TimeStamper.

Filtering

If a processor raises structlog.DropEvent, the event is silently dropped.

Therefore, the following processor drops every entry:

from structlog import DropEvent

def dropper(logger, method_name, event_dict):
raise DropEvent

But we can do better than that! How about dropping only log entries that are marked as coming from a certain peer
(e.g. monitoring)?

from structlog import DropEvent

class ConditionalDropper(object):
def __init__(self, peer_to_ignore):

self._peer_to_ignore = peer_to_ignore

def __call__(self, logger, method_name, event_dict):
"""
>>> cd = ConditionalDropper(’127.0.0.1’)
>>> cd(None, None, {’event’: ’foo’, ’peer’: ’10.0.0.1’})
{’peer’: ’10.0.0.1’, ’event’: ’foo’}
>>> cd(None, None, {’event’: ’foo’, ’peer’: ’127.0.0.1’})

2.1. Basics 15

http://en.wikipedia.org/wiki/UNIX_time

structlog Documentation, Release

Traceback (most recent call last):
...
DropEvent
"""
if event_dict.get(’peer’) == self._peer_to_ignore:

raise DropEvent
else:

return event_dict

Adapting and Rendering

An important role is played by the last processor because its duty is to adapt the event_dict into something the
underlying logging method understands. With that, it’s also the only processor that needs to know anything about the
underlying system.

For that, it can either return a string that is passed as the first (and only) positional argument to the underlying logger
or a tuple of (args, kwargs) that are passed as log_method(*args, **kwargs). Therefore return
’hello world’ is a shortcut for return ((’hello world’,), {}) (the example in Chains assumes this
shortcut has been taken).

This should give you enough power to use structlog with any logging system while writing agnostic processors that
operate on dictionaries.

Examples

The probably most useful formatter for string based loggers is JSONRenderer. Advanced log aggregation and
analysis tools like logstash offer features like telling them “this is JSON, deal with it” instead of fiddling with regular
expressions.

More examples can be found in the examples chapter. For a list of shipped processors, check out the API documenta-
tion.

2.1.7 Examples

This chapter is intended to give you a taste of realistic usage of structlog.

Flask and Thread Local Data

In the simplest case, you bind a unique request ID to every incoming request so you can easily see which log entries
belong to which request.

import uuid

import flask
import structlog

from .some_module import some_function

logger = structlog.get_logger()
app = flask.Flask(__name__)

16 Chapter 2. User’s Guide

http://logstash.net

structlog Documentation, Release

@app.route(’/login’, methods=[’POST’, ’GET’])
def some_route():

log = logger.new(
request_id=str(uuid.uuid4()),

)
do something
...
log.info(’user logged in’, user=’test-user’)
gives you:
event=’user logged in’ request_id=’ffcdc44f-b952-4b5f-95e6-0f1f3a9ee5fd’ user=’test-user’
...
some_function()
...

if __name__ == "__main__":
structlog.configure(

processors=[
structlog.processors.KeyValueRenderer(

key_order=[’event’, ’request_id’],
),

],
context_class=structlog.threadlocal.wrap_dict(dict),
logger_factory=structlog.stdlib.LoggerFactory(),

)
app.run()

some_module.py

from structlog import get_logger

logger = get_logger()

def some_function():
later then:
logger.error(’user did something’, something=’shot_in_foot’)
gives you:
event=’user did something ’request_id=’ffcdc44f-b952-4b5f-95e6-0f1f3a9ee5fd’ something=’shot_in_foot’

While wrapped loggers are immutable by default, this example demonstrates how to circumvent that using a thread
local dict implementation for context data for convenience (hence the requirement for using new() for re-initializing
the logger).

Please note that structlog.stdlib.LoggerFactory is a totally magic-free class that just deduces the name
of the caller’s module and does a logging.getLogger(). with it. It’s used by structlog.get_logger() to rid you
of logging boilerplate in application code. If you prefer to name your standard library loggers explicitly, a positional
argument to get_logger() gets passed to the factory and used as the name.

Twisted, and Logging Out Objects

If you prefer to log less but with more context in each entry, you can bind everything important to your logger and log
it out with each log entry.

import sys
import uuid

import structlog

2.1. Basics 17

http://docs.python.org/2/library/logging.html#logging.getLogger

structlog Documentation, Release

import twisted

from twisted.internet import protocol, reactor

logger = structlog.getLogger()

class Counter(object):
i = 0

def inc(self):
self.i += 1

def __repr__(self):
return str(self.i)

class Echo(protocol.Protocol):
def connectionMade(self):

self._counter = Counter()
self._log = logger.new(

connection_id=str(uuid.uuid4()),
peer=self.transport.getPeer().host,
count=self._counter,

)

def dataReceived(self, data):
self._counter.inc()
log = self._log.bind(data=data)
self.transport.write(data)
log.msg(’echoed data!’)

if __name__ == "__main__":
structlog.configure(

processors=[structlog.twisted.EventAdapter()],
logger_factory=structlog.twisted.LoggerFactory(),

)
twisted.python.log.startLogging(sys.stderr)
reactor.listenTCP(1234, protocol.Factory.forProtocol(Echo))
reactor.run()

gives you something like:

... peer=’127.0.0.1’ connection_id=’1c6c0cb5-...’ count=1 data=’123\n’ event=’echoed data!’

... peer=’127.0.0.1’ connection_id=’1c6c0cb5-...’ count=2 data=’456\n’ event=’echoed data!’

... peer=’127.0.0.1’ connection_id=’1c6c0cb5-...’ count=3 data=’foo\n’ event=’echoed data!’

... peer=’10.10.0.1’ connection_id=’85234511-...’ count=1 data=’cba\n’ event=’echoed data!’

... peer=’127.0.0.1’ connection_id=’1c6c0cb5-...’ count=4 data=’bar\n’ event=’echoed data!’

Since Twisted’s logging system is a bit peculiar, structlog ships with an adapter so it keeps behaving like you’d
expect it to behave.

I’d also like to point out the Counter class that doesn’t do anything spectacular but gets bound once per connection to
the logger and since its repr is the number itself, it’s logged out correctly for each event. This shows off the strength
of keeping a dict of objects for context instead of passing around serialized strings.

18 Chapter 2. User’s Guide

structlog Documentation, Release

Processors

Processors are a both simple and powerful feature of structlog.

So you want timestamps as part of the structure of the log entry, censor passwords, filter out log entries below your
log level before they even get rendered, and get your output as JSON for convenient parsing? Here you go:

>>> import datetime, logging, sys
>>> from structlog import wrap_logger
>>> from structlog.processors import JSONRenderer
>>> from structlog.stdlib import filter_by_level
>>> logging.basicConfig(stream=sys.stdout, format=’%(message)s’)
>>> def add_timestamp(_, __, event_dict):
... event_dict[’timestamp’] = datetime.datetime.utcnow()
... return event_dict
>>> def censor_password(_, __, event_dict):
... pw = event_dict.get(’password’)
... if pw:
... event_dict[’password’] = ’*CENSORED*’
... return event_dict
>>> log = wrap_logger(
... logging.getLogger(__name__),
... processors=[
... filter_by_level,
... add_timestamp,
... censor_password,
... JSONRenderer(indent=1, sort_keys=True)
...]
...)
>>> log.info(’something.filtered’)
>>> log.warning(’something.not_filtered’, password=’secret’)
{
"event": "something.not_filtered",
"password": "*CENSORED*",
"timestamp": "datetime.datetime(..., ..., ..., ..., ...)"
}

structlog comes with many handy processors build right in – for a list of shipped processors, check out the API
documentation.

2.2 Integration with Existing Systems

structlog can be used immediately with any existing logger. However it comes with special wrappers for the Python
standard library and Twisted that are optimized for their respective underlying loggers and contain less magic.

2.2.1 Python Standard Library

Concrete Bound Logger

To make structlog’s behavior less magicy, it ships with a standard library-specific wrapper class that has an ex-
plicit API instead of improvising: structlog.stdlib.BoundLogger. It behaves exactly like the generic
structlog.BoundLogger except:

• it’s slightly faster due to less overhead,

• has an explicit API that mirrors the log methods of standard library’s Logger,

2.2. Integration with Existing Systems 19

http://docs.python.org/2/library/logging.html#logger-objects

structlog Documentation, Release

• hence causing less cryptic error messages if you get method names wrong.

Processors

structlog comes with one standard library-specific processor:

filter_by_level(): Checks the log entries’s log level against the configuration of standard library’s logging.
Log entries below the threshold get silently dropped. Put it at the beginning of your processing chain to avoid
expensive operations happen in the first place.

Suggested Configuration

import structlog

structlog.configure(
processors=[

structlog.stdlib.filter_by_level,
structlog.processors.StackRenderer(),
structlog.processors.format_exc_info,
structlog.processors.JSONRenderer()

],
context_class=dict,
logger_factory=structlog.stdlib.LoggerFactory(),
wrapper_class=structlog.stdlib.BoundLogger,
cache_logger_on_first_use=True,

)

See also Logging Best Practices.

2.2.2 Twisted

Warning: Currently, the Twisted-specific code is not tested against Python 3.3. This is caused by this Twisted
bug and will remedied once that bug is fixed.

Concrete Bound Logger

To make structlog’s behavior less magicy, it ships with a Twisted-specific wrapper class that has an explicit
API instead of improvising: structlog.twisted.BoundLogger. It behaves exactly like the generic
structlog.BoundLogger except:

• it’s slightly faster due to less overhead,

• has an explicit API (msg() and err()),

• hence causing less cryptic error messages if you get method names wrong.

In order to structlog not disturbing your CamelCase harmony, it comes with an alias for
structlog.get_logger() calls structlog.getLogger().

Processors

structlog comes with two Twisted-specific processors:

20 Chapter 2. User’s Guide

http://twistedmatrix.com/trac/ticket/6540

structlog Documentation, Release

EventAdapter This is useful if you have an existing Twisted application and just want to wrap your loggers for
now. It takes care of transforming your event dictionary into something twisted.python.log.err can digest.

For example:

def onError(fail):
failure = fail.trap(MoonExploded)
log.err(failure, _why=’event-that-happend’)

will still work as expected.

Needs to be put at the end of the processing chain. It formats the event using a renderer that needs to be passed
into the constructor:

configure(processors=[EventAdapter(KeyValueRenderer()])

The drawback of this approach is that Twisted will format your exceptions as multi-line log entries which is
painful to parse. Therefore structlog comes with:

JSONRenderer Goes a step further and circumvents Twisted logger’s Exception/Failure handling and renders it
itself as JSON strings. That gives you regular and simple-to-parse single-line JSON log entries no matter what
happens.

Bending Foreign Logging To Your Will

structlog comes with a wrapper for Twisted’s log observers to ensure the rest of your logs are in JSON too:
JSONLogObserverWrapper().

What it does is determining whether a log entry has been formatted by JSONRenderer and if not, converts the log
entry to JSON with event being the log message and putting Twisted’s system into a second key.

So for example:

2013-09-15 22:02:18+0200 [-] Log opened.

becomes:

2013-09-15 22:02:18+0200 [-] {"event": "Log opened.", "system": "-"}

There is obviously some redundancy here. Also, I’m presuming that if you write out JSON logs, you’re going to let
something else parse them which makes the human-readable date entries more trouble than they’re worth.

To get a clean log without timestamps and additional system fields ([-]), structlog comes with
PlainFileLogObserver that writes only the plain message to a file and plainJSONStdOutLogger() that
composes it with the aforementioned JSONLogObserverWrapper() and gives you a pure JSON log without any
timestamps or other noise straight to standard out:

$ twistd -n --logger structlog.twisted.plainJSONStdOutLogger web
{"event": "Log opened.", "system": "-"}
{"event": "twistd 13.1.0 (python 2.7.3) starting up.", "system": "-"}
{"event": "reactor class: twisted...EPollReactor.", "system": "-"}
{"event": "Site starting on 8080", "system": "-"}
{"event": "Starting factory <twisted.web.server.Site ...>", ...}
...

Suggested Configuration

2.2. Integration with Existing Systems 21

http://twistedmatrix.com/documents/current/api/twisted.python.log.html#err
http://en.wikipedia.org/wiki/Standard_out#Standard_output_.28stdout.29

structlog Documentation, Release

import structlog

structlog.configure(
processors=[

structlog.processors.StackRenderer(),
structlog.twisted.JSONRenderer()

],
context_class=dict,
logger_factory=structlog.twisted.LoggerFactory(),
wrapper_class=structlog.twisted.BoundLogger,
cache_logger_on_first_use=True,

)

See also Logging Best Practices.

2.2.3 Logging Best Practices

The best practice for you depends very much on your context. To give you some pointers nevertheless, here are a few
scenarios that may be applicable to you.

Pull requests for further interesting approaches as well as refinements and more complete examples are very welcome.

Common Ideas

Logging is not a new concept and in no way special to Python. Logfiles have existed for decades and there’s little
reason to reinvent the wheel in our little world.

There are several concepts that are very well-solved in general and especially in heterogeneous environments, using
special tooling for Python applications does more harm than good and makes the operations staff build dart board with
your pictures.

Therefore let’s rely on proven tools as much as possible and do only the absolutely necessary inside of Python5. A
very nice approach is to simply log to standard out and let other tools take care of the rest.

runit

One runner that makes this very easy is the venerable runit project which made it a part of its design: server processes
don’t detach but log to standard out instead. There it gets processed by other software – potentially by one of its own
tools: svlogd. We use it extensively and it has proven itself extremely robust and capable; check out this tutorial if
you’d like to try it.

If you’re not quite convinced and want an overview on running daemons, have a look at cue’s daemon showdown that
discusses the most common ones.

Local Logging

There are basically two common ways to log to local logfiles: writing yourself into files and syslog.

5 This is obviously a privileged UNIX-centric view but even Windows has tools and means for log management although we won’t be able to
discuss them here.

22 Chapter 2. User’s Guide

http://en.wikipedia.org/wiki/Standard_out#Standard_output_.28stdout.29
http://smarden.org/runit/
http://smarden.org/runit/svlogd.8.html
http://rubyists.github.io/2011/05/02/runit-for-ruby-and-everything-else.html
https://web.archive.org/web/20130907200323/http://tech.cueup.com/blog/2013/03/08/running-daemons/

structlog Documentation, Release

Syslog

The simplest approach to logging is to forward your entries to the syslogd. Twisted, uwsgi, and runit support it
directly. It will happily add a timestamp and write wherever you tell it in its configuration. You can also log from
multiple processes into a single file and use your system’s logrotate for log rotation.

The only downside is that syslog has some quirks that show itself under high load like rate limits (they can be switched
off) and lost log entries.

runit’s svlogd

If you’ll choose runit for running your daemons, svlogd is a nicer approach. It receives the log entries via a UNIX pipe
and acts on them which includes adding of parse-friendly timestamps in tai64n as well as filtering and log rotation.

Centralized Logging

Nowadays you usually don’t want your logfiles in compressed archives distributed over dozens – if not thousands –
servers. You want them at a single location; parsed and easy to query.

Syslog (Again!)

The widely deployed syslog implementation rsyslog supports remote logging out-of-the-box. Have a look at this post
by Revolution Systems on the how.

Since syslog is such a widespread solution, there are also ways to use it with basically any centralized product.

Logstash with Lumberjack

Logstash is a great way to parse, save, and search your logs.

The general modus operandi is that you have log shippers that parse your log files and forward the log entries to your
Logstash server and store is in elasticsearch. If your log entries consist – as suggested – of a tai64n timestamp and a
JSON dictionary, this is pretty easy and efficient.

If you can’t decide on a log shipper, Lumberjack works really well.

Graylog2

Graylog goes one step further. It not only supports everything those above do (and then some); you can also log
directly JSON entries towards it – optionally even through an AMQP server (like RabbitMQ) for better reliability.
Additionally, Graylog’s Extended Log Format (GELF) allows for structured data which makes it an obvious choice to
use together with structlog.

2.3 Advanced Topics

2.3.1 Custom Wrappers

structlog comes with a generic bound logger called structlog.BoundLogger that can be used to wrap any logger
class you fancy. It does so by intercepting unknown method names and proxying them to the wrapped logger.

2.3. Advanced Topics 23

http://en.wikipedia.org/wiki/Syslogd
http://manpages.ubuntu.com/manpages/raring/man8/logrotate.8.html
http://blog.abhijeetr.com/2013/01/disable-rate-limiting-in-rsyslog-v5.html
http://blog.abhijeetr.com/2013/01/disable-rate-limiting-in-rsyslog-v5.html
http://smarden.org/runit/svlogd.8.html
http://cr.yp.to/daemontools/tai64n.html
http://www.rsyslog.com
http://www.revsys.com/blog/2010/aug/26/centralized-logging-fun-and-profit/
http://logstash.net
http://cookbook.logstash.net/recipes/log-shippers/
http://www.elasticsearch.org
http://cr.yp.to/daemontools/tai64n.html
https://github.com/jordansissel/lumberjack
http://graylog2.org/
http://support.torch.sh/help/kb/graylog2-server/using-the-amqp-input
http://www.rabbitmq.com
http://graylog2.org/about/gelf

structlog Documentation, Release

This works fine, except that it has a performance penalty and the API of BoundLogger isn’t clear from reading the
documentation because large parts depend on the wrapped logger. An additional reason is that you may want to have
semantically meaningful log method names that add meta data to log entries as it is fit (see example below).

To solve that, structlog offers you to use an own wrapper class which you can configure us-
ing structlog.configure(). And to make it easier for you, it comes with the class
structlog.BoundLoggerBase which takes care of all data binding duties so you just add your log methods if
you choose to sub-class it.

Example

It’s much easier to demonstrate with an example:

>>> from structlog import BoundLoggerBase, PrintLogger, wrap_logger
>>> class SemanticLogger(BoundLoggerBase):
... def msg(self, event, **kw):
... if not ’status’ in kw:
... return self._proxy_to_logger(’msg’, event, status=’ok’, **kw)
... else:
... return self._proxy_to_logger(’msg’, event, **kw)
...
... def user_error(self, event, **kw):
... self.msg(event, status=’user_error’, **kw)
>>> log = wrap_logger(PrintLogger(), wrapper_class=SemanticLogger)
>>> log = log.bind(user=’fprefect’)
>>> log.user_error(’user.forgot_towel’)
user=’fprefect’ status=’user_error’ event=’user.forgot_towel’

You can observe the following:

• The wrapped logger can be found in the instance variable structlog.BoundLoggerBase._logger.

• The helper method structlog.BoundLoggerBase._proxy_to_logger() that is a DRY conve-
nience function that runs the processor chain, handles possible DropEvents and calls a named function on
_logger.

• You can run the chain by hand though using structlog.BoundLoggerBase._process_event() .

These two methods and one attribute is all you need to write own wrapper classes.

2.3.2 Performance

structlog’s default configuration tries to be as unsurprising and not confusing to new developers as possible. Some of
the choices made come with an avoidable performance price tag – although its impact is debatable.

Here are a few hints how to get most out of structlog in production:

1. Use plain dicts as context classes. Python is full of them and they are highly optimized:

configure(context_class=dict)

If you don’t use automated parsing (you should!) and need predicable order of your keys for some reason, use
the key_order argument of KeyValueRenderer.

2. Use a specific wrapper class instead of the generic one. structlog comes with ones for the Python Standard
Library and for Twisted:

configure(wrapper_class=structlog.stdlib.BoundLogger)

24 Chapter 2. User’s Guide

http://en.wikipedia.org/wiki/Don%27t_repeat_yourself

structlog Documentation, Release

Writing own wrapper classes is straightforward too.

3. Avoid (frequently) calling log methods on loggers you get back from structlog.wrap_logger() and
structlog.get_logger(). Since those functions are usually called in module scope and thus before you
are able to configure them, they return a proxy that assembles the correct logger on demand.

Create a local logger if you expect to log frequently without binding:

logger = structlog.get_logger()
def f():

log = logger.bind()
for i in range(1000000000):

log.info(’iterated’, i=i)

4. Set the cache_logger_on_first_use option to True so the aforementioned on-demand loggers will be assembled
only once and cached for future uses:

configure(cache_logger_on_first_use=True)

This has the only drawback is that later calls on configure() don’t have any effect on already cached loggers
– that shouldn’t matter outside of testing though.

2.3. Advanced Topics 25

structlog Documentation, Release

26 Chapter 2. User’s Guide

CHAPTER 3

Project Information

3.1 How To Contribute

Every open source project lives from the generous help by contributors that sacrifice their time and structlog is no
different.

To make participation as pleasant as possible, this project adheres to the Code of Conduct by the Python Software
Foundation.

Here are a few hints and rules to get you started:

• Add yourself to the AUTHORS.rst file in an alphabetical fashion. Every contribution is valuable and shall be
credited.

• If your change is noteworthy, add an entry to the changelog.

• No contribution is too small; please submit as many fixes for typos and grammar bloopers as you can!

• Don’t ever break backward compatibility. Although structlog follows semantic versioning, it is infrastructure
people rely on and which isn’t mustn’t ever break by updating. If it ever has to happen for higher reasons,
structlog will follow the proven procedures of the Twisted project.

• Always add tests and docs for your code. This is a hard rule; patches with missing tests or documentation won’t
be merged – if a feature is not tested or documented, it doesn’t exist.

• Obey PEP 8 and PEP 257. Twisted-specific modules use CamelCase.

• Write good commit messages.

• Ideally, squash your commits, i.e. make your pull requests just one commit.

Note: If you have something great but aren’t sure whether it adheres – or even can adhere – to the rules above: please
submit a pull request anyway!

In the best case, we can mold it into something, in the worst case the pull request gets politely closed. There’s
absolutely nothing to fear.

Thank you for considering to contribute to structlog! If you have any question or concerns, feel free to reach out to me
– there is also a #structlog channel on freenode.

27

http://www.python.org/psf/codeofconduct/
https://github.com/hynek/structlog/blob/master/AUTHORS.rst
https://github.com/hynek/structlog/blob/master/docs/changelog.rst
http://semver.org
http://twistedmatrix.com/trac/wiki/CompatibilityPolicy
http://www.python.org/dev/peps/pep-0008/
http://www.python.org/dev/peps/pep-0257/
http://tbaggery.com/2008/04/19/a-note-about-git-commit-messages.html
http://gitready.com/advanced/2009/02/10/squashing-commits-with-rebase.html
http://freenode.net

structlog Documentation, Release

3.2 License and Hall of Fame

structlog is licensed under the permissive Apache License, Version 2. The full license text can be also found in the
source code repository.

3.2.1 Authors

structlog is written and maintained by Hynek Schlawack. It’s inspired by previous work done by Jean-Paul Calderone
and David Reid.

The development is kindly supported by Variomedia AG.

The following folks helped forming structlog into what it is now:

• Alex Gaynor

• Christopher Armstrong

• Daniel Lindsley

• David Reid

• Donald Stufft

• George-Cristian Bîrzan

• Glyph

• Holger Krekel

• Itamar Turner-Trauring

• Jack Pearkes

• Jean-Paul Calderone

• Lynn Root

• Noah Kantrowitz

• Tarek Ziadé

• Thomas Heinrichsdobler

• Tom Lazar

Some of them disapprove of the addition of thread local context data. :)

Third Party Code

The compatibility code that makes this software run on both Python 2 and 3 is heavily inspired and partly copy and
pasted from the MIT-licensed six by Benjamin Peterson. The only reason why it’s not used as a dependency is to avoid
any runtime dependency in the first place.

3.3 Changelog

3.3.1 0.4.0

#5: Add meta data (e.g. function names, line numbers) extraction for wrapped stdlib loggers.

28 Chapter 3. Project Information

http://choosealicense.com/licenses/apache/
https://github.com/hynek/structlog/blob/master/LICENSE
https://hynek.me/
http://as.ynchrono.us
http://dreid.org
https://www.variomedia.de/
https://github.com/alex
https://github.com/radix
https://github.com/toastdriven
http://dreid.org
https://github.com/dstufft
https://github.com/gcbirzan
https://github.com/glyph
https://github.com/hpk42
https://github.com/itamarst
https://github.com/pearkes
http://as.ynchrono.us
https://github.com/econchick
https://github.com/coderanger
https://github.com/tarekziade
https://github.com/dertyp
https://github.com/tomster
http://choosealicense.com/licenses/mit/
https://bitbucket.org/gutworth/six/
https://github.com/hynek/structlog/issues/5

structlog Documentation, Release

: Allow the standard library name guesser to ignore certain frame names. This is useful together with frameworks.

: Add structlog.processors.ExceptionPrettyPrinter for development and testing when multiline
log entries aren’t just acceptable but even helpful.

#12: Allow optional positional arguments for structlog.get_logger() that are passed to logger factories. The
standard library factory uses this for explicit logger naming.

#6: Add structlog.processors.StackInfoRenderer for adding stack information to log entries without
involving exceptions. Also added it to default processor chain.

3.3.2 0.3.2

: Fix stdlib’s name guessing.

3.3.3 0.3.1

: Add forgotten structlog.processors.TimeStamper to API documentation.

3.3.4 0.3.0

: Extract a common base class for loggers that does nothing except keeping the context state. This makes writing
custom loggers much easier and more straight-forward. See structlog.BoundLoggerBase.

: Allow logger proxies that are returned by structlog.get_logger() and structlog.wrap_logger()
to cache the BoundLogger they assemble according to configuration on first use. See Performance and the
cache_logger_on_first_use of structlog.configure() and structlog.wrap_logger().

: Add Twisted-specific BoundLogger that has an explicit API instead of intercepting unknown method calls. See
structlog.twisted.BoundLogger.

: structlog.ReturnLogger now allows arbitrary positional and keyword arguments.

: Add Python Standard Library-specific BoundLogger that has an explicit API instead of intercepting unknown
method calls. See structlog.stdlib.BoundLogger.

: Greatly enhanced and polished the documentation and added a new theme based on Write The Docs, requests, and
Flask. See License and Hall of Fame.

3.3.5 0.2.0

: Allow for custom serialization in structlog.twisted.JSONRenderer without abusing __repr__.

: Enhance Twisted support by offering JSONification of non-structlog log entries.

: structlog.PrintLogger now uses proper I/O routines and is thus viable not only for examples but also for
production.

: Add key_order option to structlog.processors.KeyValueRenderer for more predictable log entries
with any dict class.

: Promote to stable, thus henceforth a strict backward compatibility policy is put into effect. See How To Contribute.

3.3.6 0.1.0

: Initial work.

3.3. Changelog 29

https://github.com/hynek/structlog/issues/12
https://github.com/hynek/structlog/issues/6

structlog Documentation, Release

30 Chapter 3. Project Information

CHAPTER 4

API Reference

4.1 structlog Package

4.1.1 structlog Package

structlog.get_logger(*args, **initial_values)
Convenience function that returns a logger according to configuration.

>>> from structlog import get_logger
>>> log = get_logger(y=23)
>>> log.msg(’hello’, x=42)
y=23 x=42 event=’hello’

Parameters

• args – Optional positional arguments that are passed unmodified to the logger factory.
Therefore it depends on the factory what they mean.

• initial_values – Values that are used to pre-populate your contexts.

Return type A proxy that creates a correctly configured bound logger when necessary.

See Configuration for details.

If you prefer CamelCase, there’s an alias for your reading pleasure: structlog.getLogger(). New in
version 0.4.0: args

structlog.getLogger(*args, **initial_values)
CamelCase alias for structlog.get_logger().

This function is supposed to be in every source file – we don’t want it to stick out like a sore thumb in frameworks
like Twisted or Zope.

structlog.wrap_logger(logger, processors=None, wrapper_class=None, context_class=None,
cache_logger_on_first_use=None, logger_factory_args=None, **ini-
tial_values)

Create a new bound logger for an arbitrary logger.

Default values for processors, wrapper_class, and context_class can be set using configure().

If you set an attribute here, configure() calls have no effect for the respective attribute.

31

structlog Documentation, Release

In other words: selective overwriting of the defaults while keeping some is possible.

Parameters

• initial_values – Values that are used to pre-populate your contexts.

• logger_factory_args (tuple) – Values that are passed unmodified as
*logger_factory_args to the logger factory if not None.

Return type A proxy that creates a correctly configured bound logger when necessary.

See configure() for the meaning of the rest of the arguments. New in version 0.4.0: logger_factory_args

structlog.configure(processors=None, wrapper_class=None, context_class=None, log-
ger_factory=None, cache_logger_on_first_use=None)

Configures the global defaults.

They are used if wrap_logger() has been called without arguments.

Also sets the global class attribute is_configured to True on first call. Can be called several times, keeping
an argument at None leaves is unchanged from the current setting.

Use reset_defaults() to undo your changes.

Parameters

• processors (list) – List of processors.

• wrapper_class (type) – Class to use for wrapping loggers instead of
structlog.BoundLogger. See Python Standard Library, Twisted, and Custom
Wrappers.

• context_class (type) – Class to be used for internal context keeping.

• logger_factory (callable) – Factory to be called to create a new logger that shall be wrapped.

• cache_logger_on_first_use (bool) – wrap_logger doesn’t return an actual wrapped logger
but a proxy that assembles one when it’s first used. If this option is set to True, this assem-
bled logger is cached. See Performance.

New in version 0.3.0: cache_logger_on_first_use

structlog.configure_once(*args, **kw)
Configures iff structlog isn’t configured yet.

It does not matter whether is was configured using configure() or configure_once() before.

Raises a RuntimeWarning if repeated configuration is attempted.

structlog.reset_defaults()
Resets global default values to builtins.

That means [StackInfoRenderer, format_exc_info(), KeyValueRenderer] for processors,
BoundLogger for wrapper_class, OrderedDict for context_class, PrintLoggerFactory for log-
ger_factory, and False for cache_logger_on_first_use.

Also sets the global class attribute is_configured to False.

class structlog.BoundLogger(logger, processors, context)
A generic BoundLogger that can wrap anything.

Every unknown method will be passed to the wrapped logger. If that’s too much magic for you, try
structlog.twisted.BoundLogger or :class:‘structlog.twisted.BoundLogger which also take advantage
of knowing the wrapped class which generally results in better performance.

Not intended to be instantiated by yourself. See wrap_logger() and get_logger().

32 Chapter 4. API Reference

structlog Documentation, Release

new(**new_values)
Clear context and binds initial_values using bind().

Only necessary with dict implementations that keep global state like those wrapped by
structlog.threadlocal.wrap_dict() when threads are re-used.

Return type self.__class__

bind(**new_values)
Return a new logger with new_values added to the existing ones.

Return type self.__class__

unbind(*keys)
Return a new logger with keys removed from the context.

Raises KeyError If the key is not part of the context.

Return type self.__class__

class structlog.PrintLogger(file=None)
Prints events into a file.

Parameters file (file) – File to print to. (default: stdout)

>>> from structlog import PrintLogger
>>> PrintLogger().msg(’hello’)
hello

Useful if you just capture your stdout with tools like runit or if you forward your stderr to syslog.

Also very useful for testing and examples since logging is sometimes finicky in doctests.

msg(message)
Print message.

err(message)
Print message.

debug(message)
Print message.

info(message)
Print message.

warning(message)
Print message.

error(message)
Print message.

critical(message)
Print message.

log(message)
Print message.

class structlog.PrintLoggerFactory(file=None)
Produces PrintLoggers.

To be used with structlog.configure()‘s logger_factory.

Parameters file (file) – File to print to. (default: stdout)

Positional arguments are silently ignored. New in version 0.4.0.

4.1. structlog Package 33

http://smarden.org/runit/
http://hynek.me/articles/taking-some-pain-out-of-python-logging/

structlog Documentation, Release

class structlog.ReturnLogger
Returns the string that it’s called with.

>>> from structlog import ReturnLogger
>>> ReturnLogger().msg(’hello’)
’hello’
>>> ReturnLogger().msg(’hello’, when=’again’)
((’hello’,), {’when’: ’again’})

Useful for unit tests. Changed in version 0.3.0: Allow for arbitrary arguments and keyword arguments to be
passed in.

msg(*args, **kw)
Return tuple of args, kw or just args[0] if only one arg passed

err(*args, **kw)
Return tuple of args, kw or just args[0] if only one arg passed

debug(*args, **kw)
Return tuple of args, kw or just args[0] if only one arg passed

info(*args, **kw)
Return tuple of args, kw or just args[0] if only one arg passed

warning(*args, **kw)
Return tuple of args, kw or just args[0] if only one arg passed

error(*args, **kw)
Return tuple of args, kw or just args[0] if only one arg passed

critical(*args, **kw)
Return tuple of args, kw or just args[0] if only one arg passed

log(*args, **kw)
Return tuple of args, kw or just args[0] if only one arg passed

class structlog.ReturnLoggerFactory
Produces and caches ReturnLoggers.

To be used with structlog.configure()‘s logger_factory.

Positional arguments are silently ignored. New in version 0.4.0.

exception structlog.DropEvent
If raised by an processor, the event gets silently dropped.

Derives from BaseException because it’s technically not an error.

class structlog.BoundLoggerBase(logger, processors, context)
Immutable context carrier.

Doesn’t do any actual logging; examples for useful subclasses are:

•the generic BoundLogger that can wrap anything,

•structlog.twisted.BoundLogger,

•and structlog.stdlib.BoundLogger.

See also Custom Wrappers.

new(**new_values)
Clear context and binds initial_values using bind().

34 Chapter 4. API Reference

structlog Documentation, Release

Only necessary with dict implementations that keep global state like those wrapped by
structlog.threadlocal.wrap_dict() when threads are re-used.

Return type self.__class__

bind(**new_values)
Return a new logger with new_values added to the existing ones.

Return type self.__class__

unbind(*keys)
Return a new logger with keys removed from the context.

Raises KeyError If the key is not part of the context.

Return type self.__class__

_logger = None
Wrapped logger.

Note: Despite underscore available read-only to custom wrapper classes.

See also Custom Wrappers.

_process_event(method_name, event, event_kw)
Combines creates an event_dict and runs the chain.

Call it to combine your event and context into an event_dict and process using the processor chain.

Parameters

• method_name (str) – The name of the logger method. Is passed into the processors.

• event – The event – usually the first positional argument to a logger.

• event_kw – Additional event keywords. For example if someone calls
log.msg(’foo’, bar=42), event would to be ’foo’ and event_kw {’bar’:
42}.

Raises structlog.DropEvent if log entry should be dropped.

Return type tuple of (*args, **kw)

Note: Despite underscore available to custom wrapper classes.

See also Custom Wrappers.

_proxy_to_logger(method_name, event=None, **event_kw)
Run processor chain on event & call method_name on wrapped logger.

DRY convenience method that runs _process_event(), takes care of handling
structlog.DropEvent, and finally calls method_name on _logger with the result.

Parameters

• method_name (str) – The name of the method that’s going to get called. Technically it
should be identical to the method the user called because it also get passed into processors.

• event – The event – usually the first positional argument to a logger.

• event_kw – Additional event keywords. For example if someone calls
log.msg(’foo’, bar=42), event would to be ’foo’ and event_kw {’bar’:
42}.

4.1. structlog Package 35

structlog Documentation, Release

Note: Despite underscore available to custom wrapper classes.

See also Custom Wrappers.

4.1.2 threadlocal Module

Primitives to keep context global but thread (and greenlet) local.

structlog.threadlocal.wrap_dict(dict_class)
Wrap a dict-like class and return the resulting class.

The wrapped class and used to keep global in the current thread.

Parameters dict_class (type) – Class used for keeping context.

Return type type

structlog.threadlocal.tmp_bind(logger, **tmp_values)
Bind tmp_values to logger & memorize current state. Rewind afterwards.

>>> from structlog import wrap_logger, PrintLogger
>>> from structlog.threadlocal import tmp_bind, wrap_dict
>>> logger = wrap_logger(PrintLogger(), context_class=wrap_dict(dict))
>>> with tmp_bind(logger, x=5) as tmp_logger:
... logger = logger.bind(y=3)
... tmp_logger.msg(’event’)
y=3 x=5 event=’event’
>>> logger.msg(’event’)
event=’event’

structlog.threadlocal.as_immutable(logger)
Extract the context from a thread local logger into an immutable logger.

Parameters logger (BoundLogger) – A logger with possibly thread local state.

Return type BoundLogger with an immutable context.

4.1.3 processors Module

Processors useful regardless of the logging framework.

class structlog.processors.JSONRenderer(**dumps_kw)
Render the event_dict using json.dumps(event_dict, **json_kw).

Parameters json_kw – Are passed unmodified to json.dumps().

>>> from structlog.processors import JSONRenderer
>>> JSONRenderer(sort_keys=True)(None, None, {’a’: 42, ’b’: [1, 2, 3]})
’{"a": 42, "b": [1, 2, 3]}’

Bound objects are attempted to be serialize using a __structlog__ method. If none is defined, repr() is
used:

>>> class C1(object):
... def __structlog__(self):
... return [’C1!’]
... def __repr__(self):
... return ’__structlog__ took precedence’

36 Chapter 4. API Reference

structlog Documentation, Release

>>> class C2(object):
... def __repr__(self):
... return ’No __structlog__, so this is used.’
>>> from structlog.processors import JSONRenderer
>>> JSONRenderer(sort_keys=True)(None, None, {’c1’: C1(), ’c2’: C2()})
’{"c1": ["C1!"], "c2": "No __structlog__, so this is used."}’

Please note that additionally to strings, you can also return any type the standard library JSON module knows
about – like in this example a list. Changed in version 0.2.0: Added support for __structlog__ serialization
method.

class structlog.processors.KeyValueRenderer(sort_keys=False, key_order=None)
Render event_dict as a list of Key=repr(Value) pairs.

Parameters

• sort_keys (bool) – Whether to sort keys when formatting.

• key_order (list) – List of keys that should be rendered in this exact order. Missing keys will
be rendered as None, extra keys depending on sort_keys and the dict class.

>>> from structlog.processors import KeyValueRenderer
>>> KeyValueRenderer(sort_keys=True)(None, None, {’a’: 42, ’b’: [1, 2, 3]})
’a=42 b=[1, 2, 3]’
>>> KeyValueRenderer(key_order=[’b’, ’a’])(None, None,
... {’a’: 42, ’b’: [1, 2, 3]})
’b=[1, 2, 3] a=42’

New in version 0.2.0: key_order

class structlog.processors.UnicodeEncoder(encoding=’utf-8’, errors=’backslashreplace’)
Encode unicode values in event_dict.

Parameters

• encoding (str) – Encoding to encode to (default: ’utf-8’.

• errors (str) – How to cope with encoding errors (default ’backslashreplace’).

Useful for KeyValueRenderer if you don’t want to see u-prefixes:

>>> from structlog.processors import KeyValueRenderer, UnicodeEncoder
>>> KeyValueRenderer()(None, None, {’foo’: u’bar’})
"foo=u’bar’"
>>> KeyValueRenderer()(None, None,
... UnicodeEncoder()(None, None, {’foo’: u’bar’}))
"foo=’bar’"

or JSONRenderer and structlog.twisted.JSONRenderer to make sure user-supplied strings don’t
break the renderer.

Just put it in the processor chain before the renderer.

structlog.processors.format_exc_info(logger, name, event_dict)
Replace an exc_info field by an exception string field:

If event_dict contains the key exc_info, there are two possible behaviors:

•If the value is a tuple, render it into the key exception.

•If the value true but no tuple, obtain exc_info ourselves and render that.

If there is no exc_info key, the event_dict is not touched. This behavior is analogue to the one of the stdlib’s
logging.

4.1. structlog Package 37

structlog Documentation, Release

>>> from structlog.processors import format_exc_info
>>> try:
... raise ValueError
... except ValueError:
... format_exc_info(None, None, {’exc_info’: True})
{’exception’: ’Traceback (most recent call last):...

class structlog.processors.StackInfoRenderer
Add stack information with key stack if stack_info is true.

Useful when you want to attach a stack dump to a log entry without involving an exception.

It works analogously to the stack_info argument of the Python 3 standard library logging but works on both 2
and 3. New in version 0.4.0.

class structlog.processors.ExceptionPrettyPrinter(file=None)
Pretty print exceptions and remove them from the event_dict.

Parameters file (file) – Target file for output (default: sys.stdout).

This processor is mostly for development and testing so you can read exceptions properly formatted.

It behaves like format_exc_info() except it removes the exception data from the event dictionary after
printing it.

It’s tolerant to having format_exc_info in front of itself in the processor chain but doesn’t require it. In other
words, it handles both exception as well as exc_info keys. New in version 0.4.0.

class structlog.processors.TimeStamper(fmt=None, utc=True)
Add a timestamp to event_dict.

Note: You probably want to let OS tools take care of timestamping. See also Logging Best Practices.

Parameters

• format (str) – strftime format string, or "iso" for ISO 8601, or None for a UNIX times-
tamp.

• utc (bool) – Whether timestamp should be in UTC or local time.

>>> from structlog.processors import TimeStamper
>>> TimeStamper()(None, None, {})
{’timestamp’: 1378994017}
>>> TimeStamper(fmt=’iso’)(None, None, {})
{’timestamp’: ’2013-09-12T13:54:26.996778Z’}
>>> TimeStamper(fmt=’%Y’)(None, None, {})
{’timestamp’: ’2013’}

4.1.4 stdlib Module

Processors and helpers specific to the logging module from the Python standard library.

class structlog.stdlib.BoundLogger(logger, processors, context)
Python Standard Library version of structlog.BoundLogger. Works exactly like the generic one except
that it takes advantage of knowing the logging methods in advance.

Use it like:

38 Chapter 4. API Reference

http://en.wikipedia.org/wiki/ISO_8601
http://en.wikipedia.org/wiki/Unix_time
http://en.wikipedia.org/wiki/Unix_time
http://docs.python.org/2/library/logging.html
http://docs.python.org/

structlog Documentation, Release

configure(
wrapper_class=structlog.stdlib.BoundLogger,

)

class structlog.stdlib.LoggerFactory(ignore_frame_names=None)
Build a standard library logger when an instance is called.

Sets a custom logger using logging.setLogggerClass so variables in log format are expanded properly.

>>> from structlog import configure
>>> from structlog.stdlib import LoggerFactory
>>> configure(logger_factory=LoggerFactory())

Parameters ignore_frame_names (list of str) – When guessing the name of a logger, skip frames
whose names start with one of these. For example, in pyramid applications you’ll want to set it
to [’venusian’, ’pyramid.config’].

__call__(*args)
Deduce the caller’s module name and create a stdlib logger.

If an optional argument is passed, it will be used as the logger name instead of guesswork. This
optional argument would be passed from the structlog.get_logger() call. For example
struclog.get_logger(’foo’) would cause this method to be called with ’foo’ as its first posi-
tional argument.

Return type logging.Logger

Changed in version 0.4.0: Added support for optional positional arguments. Using the first one for naming
the constructed logger.

structlog.stdlib.filter_by_level(logger, name, event_dict)
Check whether logging is configured to accept messages from this log level.

Should be the first processor if stdlib’s filtering by level is used so possibly expensive processors like exception
formatters are avoided in the first place.

>>> import logging
>>> from structlog.stdlib import filter_by_level
>>> logging.basicConfig(level=logging.WARN)
>>> logger = logging.getLogger()
>>> filter_by_level(logger, ’warn’, {})
{}
>>> filter_by_level(logger, ’debug’, {})
Traceback (most recent call last):
...
DropEvent

4.1.5 twisted Module

Processors and tools specific to the Twisted networking engine.

See also structlog’s Twisted support.

class structlog.twisted.BoundLogger(logger, processors, context)
Twisted-specific version of structlog.BoundLogger.

Works exactly like the generic one except that it takes advantage of knowing the logging methods in advance.

Use it like:

4.1. structlog Package 39

http://twistedmatrix.com/

structlog Documentation, Release

configure(
wrapper_class=structlog.twisted.BoundLogger,

)

bind(**new_values)
Return a new logger with new_values added to the existing ones.

Return type self.__class__

unbind(*keys)
Return a new logger with keys removed from the context.

Raises KeyError If the key is not part of the context.

Return type self.__class__

new(**new_values)
Clear context and binds initial_values using bind().

Only necessary with dict implementations that keep global state like those wrapped by
structlog.threadlocal.wrap_dict() when threads are re-used.

Return type self.__class__

msg(event=None, **kw)
Process event and call log.msg() with the result.

err(event=None, **kw)
Process event and call log.err() with the result.

class structlog.twisted.LoggerFactory
Build a Twisted logger when an instance is called.

>>> from structlog import configure
>>> from structlog.twisted import LoggerFactory
>>> configure(logger_factory=LoggerFactory())

__call__(*args)
Positional arguments are silently ignored.

Rvalue A new Twisted logger.

Changed in version 0.4.0: Added support for optional positional arguments.

class structlog.twisted.EventAdapter(dictRenderer=None)
Adapt an event_dict to Twisted logging system.

Particularly, make a wrapped twisted.python.log.err behave as expected.

Parameters dictRenderer (callable) – Renderer that is used for the actual log message. Please note
that structlog comes with a dedicated JSONRenderer.

Must be the last processor in the chain and requires a dictRenderer for the actual formatting as an constructor
argument in order to be able to fully support the original behaviors of log.msg() and log.err().

class structlog.twisted.JSONRenderer(**dumps_kw)
Behaves like structlog.processors.JSONRenderer except that it formats tracebacks and failures
itself if called with err().

Note: This ultimately means that the messages get logged out using msg(), and not err() which renders failures
in separate lines.

Therefore it will break your tests that contain assertions using flushLoggedErrors.

40 Chapter 4. API Reference

http://twistedmatrix.com/documents/current/api/twisted.python.log.html#err
http://twistedmatrix.com/documents/current/api/twisted.trial.unittest.SynchronousTestCase.html#flushLoggedErrors

structlog Documentation, Release

Not an adapter like EventAdapter but a real formatter. Nor does it require to be adapted using it.

Use together with a JSONLogObserverWrapper-wrapped Twisted logger like
plainJSONStdOutLogger() for pure-JSON logs.

structlog.twisted.plainJSONStdOutLogger()
Return a logger that writes only the message to stdout.

Transforms non-JSONRenderer messages to JSON.

Ideal for JSONifying log entries from Twisted plugins and libraries that are outside of your control:

$ twistd -n --logger structlog.twisted.plainJSONStdOutLogger web
{"event": "Log opened.", "system": "-"}
{"event": "twistd 13.1.0 (python 2.7.3) starting up.", "system": "-"}
{"event": "reactor class: twisted...EPollReactor.", "system": "-"}
{"event": "Site starting on 8080", "system": "-"}
{"event": "Starting factory <twisted.web.server.Site ...>", ...}
...

Composes PlainFileLogObserver and JSONLogObserverWrapper to a usable logger. New in ver-
sion 0.2.0.

structlog.twisted.JSONLogObserverWrapper(observer)
Wrap a log observer and render non-JSONRenderer entries to JSON.

Parameters observer (ILogObserver) – Twisted log observer to wrap. For example
PlainFileObserver or Twisted’s stock FileLogObserver

New in version 0.2.0.

class structlog.twisted.PlainFileLogObserver(file)
Write only the the plain message without timestamps or anything else.

Great to just print JSON to stdout where you catch it with something like runit.

Parameters file (file) – File to print to.

New in version 0.2.0.

4.1. structlog Package 41

http://twistedmatrix.com/documents/current/api/twisted.python.log.FileLogObserver.html

structlog Documentation, Release

42 Chapter 4. API Reference

CHAPTER 5

Indices and tables

• genindex

• modindex

• search

43

structlog Documentation, Release

44 Chapter 5. Indices and tables

Python Module Index

s
structlog, ??
structlog.processors, ??
structlog.stdlib, ??
structlog.threadlocal, ??
structlog.twisted, ??

45

