

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	structlog documentation

structlog: Structured Logging in Python

Release v0.2.0 (Installation).

structlog makes structured logging in Python easy by augmenting your existing logger.
It’s licensed under the permissive Apache License, version 2 [http://choosealicense.com/licenses/apache/], available from PyPI [https://pypi.python.org/pypi/structlog/], and the source code can be found on GitHub [https://github.com/hynek/structlog].

Full documentation can be found at http://www.structlog.org/.
Find out what’s new from the changelog [http://www.structlog.org/en/latest/changelog.html]!

structlog targets Python 2.6, 2.7, 3.2, and 3.3 as well as PyPy with no additional dependencies for core functionality.

If you need any help, visit us on #structlog on Freenode [http://freenode.net]!

Why You Want Structured Logging

I believe the widespread use of format strings in logging is based on two presumptions:

	The first level consumer of a log message is a human.

	The programmer knows what information is needed to debug an issue.

I believe these presumptions are no longer correct in server side software.

Paul Querna [http://journal.paul.querna.org/articles/2011/12/26/log-for-machines-in-json/]

Structured logging means that you don’t write hard-to-parse and hard-to-keep-consistent prose in your logs but that you log events that happen in a context instead.

Why You Want to Use structlog

Because it’s easy and you don’t have to replace your underlying logger – you just add structure to your log entries and format them to strings before they hit your real loggers.

structlog supports you with building your context as you go (e.g. if a user logs in, you bind their user name to your current logger) and log events when they happen (i.e. the user does something log-worthy):

>>> log = log.bind(user='anonymous', some_key=23)
>>> log = log.bind(user='hynek', source='http', another_key=42)
>>> log.info('user.logged_in', happy=True)
some_key=23 user='hynek' source='http' another_key=42 happy=True event='user.logged_in'

This ability to bind key/values pairs to a logger frees you from using conditionals, closures, or boilerplate methods to log out all relevant data.

Additionally, structlog offers you a flexible way to filter and modify your log entries using so called processors before the entry is passed to your real logger.
The possibilities include logging in JSON, adding arbitrary meta data like timestamps, counting events as metrics, or dropping log entries caused by your monitoring system.

Why You Can Start Using structlog TODAY

	You can use both your bare logger and as well as the same logger wrapped by structlog at the same time.
structlog avoids monkeypatching so a peaceful co-existence between various loggers is unproblematic.

	Events are free-form and interpreted as strings by default.
Therefore the transition from traditional to structured logging is seamless most of the time.
Just start wrapping your logger of choice and bind values later.

	If you don’t like the idea of keeping the context within a local logger instance like in the example above, structlog offers transparent thread local storage for your context.

Intrigued? Get started now or have a look at more realistic examples and be completely convinced!

User’s Guide

	Getting Started
	Installation

	Your First Log Entry

	Building a Context

	structlog and Standard Library’s logging

	Liked what you saw?

	Loggers
	Shipped Loggers

	Configuration

	Immutability

	Thread Local Context

	Processors
	Chains

	Filtering

	Adapting and Rendering

	Twisted Support
	Logging Best Practices

	Examples
	Flask and Thread Local Data

	Twisted, and Logging Out Objects

	Processors

	Custom Wrapper Classes

API

	structlog Package
	structlog Package

	threadlocal Module

	processors Module

	stdlib Module

	twisted Module

Additional Notes

	How To Contribute

	License and Hall of Fame

	Changelog

Indices and tables

	Index

	Module Index

	Search Page

 Copyright 2013, Hynek Schlawack.
 Created using Sphinx 1.1.3.

 Brought to you by Read the Docs

 	latest

 	0.2.0-0

 	0.1.0

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	structlog documentation

Getting Started

Installation

structlog can be easily installed using:

$ pip install structlog

Python 2.6

If you’re running Python 2.6 and want to use OrderedDicts for your context (which is the default), you also have to install the respective compatibility package:

$ pip install ordereddict

If the order of the keys of your context doesn’t matter (e.g. if you’re logging JSON that gets parsed anyway), simply use a vanilla dict to avoid this dependency.
See Configuration on how to achieve that.

Your First Log Entry

A lot of effort went into making structlog accessible without reading pages of documentation.
And indeed, the simplest possible usage looks like this:

>>> import structlog
>>> log = structlog.get_logger()
>>> log.msg('greeted', whom='world', more_than_a_string=[1, 2, 3])
whom='world' more_than_a_string=[1, 2, 3] event='greeted'

Here, structlog takes full advantage of its hopefully useful default settings:

	Output is sent to standard out [http://en.wikipedia.org/wiki/Standard_out#Standard_output_.28stdout.29] instead of exploding into the user’s face.
Yes, that seems a rather controversial attitude towards logging.

	All keywords are formatted using structlog.processors.KeyValueRenderer.
That in turn uses repr() [http://docs.python.org/2/reference/datamodel.html#object.__repr__] to serialize all values to strings.
Thus, it’s easy to add support for logging of your own objects[*].

It should be noted that even in most complex logging setups the example would still look just like that thanks to Configuration.

There you go, structured logging!
However, this alone wouldn’t warrant its own package.
After all, there’s even a recipe [http://docs.python.org/2/howto/logging-cookbook.html] on structured logging for the standard library.
So let’s go a step further.

Building a Context

Imagine a hypothetical web application that wants to log out all relevant data with just the API from above:

from structlog import get_logger

log = get_logger()

def view(request):
 user_agent = request.get('HTTP_USER_AGENT', 'UNKNOWN')
 peer_ip = request.client_addr
 if something:
 log.msg('something', user_agent=user_agent, peer_ip=peer_ip)
 return 'something'
 elif something_else:
 log.msg('something_else', user_agent=user_agent, peer_ip=peer_ip)
 return 'something_else'
 else:
 log.msg('else', user_agent=user_agent, peer_ip=peer_ip)
 return 'else'

The calls themselves are nice and straight to the point, however you’re repeating yourself all over the place.
At this point, you’ll be tempted to write a closure like

def log_closure(event):
 log.msg(event, user_agent=user_agent, peer_ip=peer_ip)

inside of the view.
Problem solved?
Not quite.
What if the parameters are introduced step by step?
Do you really want to have a logging closure in each of your views?

Let’s have a look at a better approach:

from structlog import get_logger

logger = get_logger()

def view(request):
 log = logger.bind(
 user_agent=request.get('HTTP_USER_AGENT', 'UNKNOWN'),
 peer_ip=request.client_addr,
)
 foo = request.get('foo')
 if foo:
 log = log.bind(foo=foo)
 if something:
 log.msg('something')
 return 'something'
 elif something_else:
 log.msg('something_else')
 return 'something_else'
 else:
 log.msg('else')
 return 'else'

Suddenly your logger becomes your closure!

For structlog, a log entry is just a dictionary called event dict[ionary]:

	You can pre-build a part of the dictionary step by step.
These pre-saved values are called the context.

	As soon as an event happens – which is a dictionary too – it is merged together with the context to an event dict and logged out.

	To keep as much order of the keys as possible, an OrderedDict [http://docs.python.org/2/library/collections.html#collections.OrderedDict] is used for the context by default.

	The recommended way of binding values is the one in these examples: creating new loggers with a new context.
If you’re okay with giving up immutable local state for convenience, you can also use thread/greenlet local storage for the context.

structlog and Standard Library’s logging

structlog’s primary application isn’t printing though.
Instead, it’s intended to wrap your existing loggers and add structure and incremental context building to them.
For that, structlog is completely agnostic of your underlying logger – you can use it with any logger you like.

The most prominent example of such an ‘existing logger’ is without doubt the logging module in the standard library.
To make this common case as simple as possible, structlog comes with some tools to help you:

>>> import logging
>>> logging.basicConfig()
>>> from structlog import get_logger, configure
>>> from structlog.stdlib import LoggerFactory
>>> configure(logger_factory=LoggerFactory())
>>> log = get_logger()
>>> log.warn('it works!', difficulty='easy')
WARNING:structlog...:difficulty='easy' event='it works!'

In other words, you tell structlog that you would like to use the standard library logger factory and keep calling get_logger() like before.

Liked what you saw?

Now you’re all set for the rest of the user’s guide.
If you want to see more code, make sure to check out the Examples!

	[*]	In production, you’re more likely to use JSONRenderer that can also be customized using a __structlog__ method so you don’t have to change your repr methods to something they weren’t originally intended for.

 Copyright 2013, Hynek Schlawack.
 Created using Sphinx 1.1.3.

 Brought to you by Read the Docs

 	latest

 	0.2.0-0

 	0.1.0

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	structlog documentation

Loggers

The center of structlog is the immutable log wrapper BoundLogger.

All it does is:

	Keeping a context dictionary and a logger that it’s wrapping,

	recreating itself with (optional) additional context data (the bind() and new() methods),

	recreating itself with less data (unbind()),

	and finally relaying all other method calls to the wrapped logger after processing the log entry with the configured chain of processors.

You won’t be instantiating it yourself though.
For that there is the structlog.wrap_logger() function (or the convenience function structlog.get_logger() we’ll discuss in a minute):

>>> from structlog import wrap_logger
>>> class PrintLogger(object):
... def msg(self, message):
... print message
>>> def proc(logger, method_name, event_dict):
... print 'I got called with', event_dict
... return repr(event_dict)
>>> log = wrap_logger(PrintLogger(), processors=[proc], context_class=dict)
>>> log2 = log.bind(x=42)
>>> log == log2
False
>>> log.msg('hello world')
I got called with {'event': 'hello world'}
{'event': 'hello world'}
>>> log2.msg('hello world')
I got called with {'x': 42, 'event': 'hello world'}
{'x': 42, 'event': 'hello world'}
>>> log3 = log2.unbind('x')
>>> log == log3
True
>>> log3.msg('nothing bound anymore', foo='but you can structure the event too')
I got called with {'foo': 'but you can structure the event too', 'event': 'nothing bound anymore'}
{'foo': 'but you can structure the event too', 'event': 'nothing bound anymore'}

As you can see, it accepts one mandatory and a few optional arguments:

	logger

	The one an only positional argument is the logger that you want to wrap and to which the log entries will be proxied.
If you wish to use a configured logger factory, set it to None.

	processors

	A list of callables that can filter, mutate, and format the log entry before it gets passed to the wrapped logger.

Default is [format_exc_info(), KeyValueRenderer].

	context_class

	The class to save your context in.
Particularly useful for thread local context storage.

Default is OrderedDict [http://docs.python.org/2/library/collections.html#collections.OrderedDict].

Additionally, the following arguments are allowed too:

	wrapper_class

	A class to use instead of BoundLogger for wrapping.
This is useful if you want to sub-class BoundLogger and add custom logging methods.
BoundLogger’s bind/new methods are sub-classing friendly so you won’t have to re-implement them.
Please refer to the related example how this may look like.

	initial_values

	The values that new wrapped loggers are automatically constructed with.
Useful for example if you want to have the module name as part of the context.

Note

Free your mind from the preconception that log entries have to be serialized to strings eventually.
All structlog cares about is a dictionary of keys and values.
What happens to it depends on the logger you wrap and your processors alone.

This gives you the power to log directly to databases, log aggregation servers, web services, and whatnot.

Shipped Loggers

To save you the hassle of using standard library logging for simple stdout logging, structlog ships a PrintLogger.
It’s handy for both examples and in combination with tools like runit [http://smarden.org/runit/] or stdout/stderr-forwarding [http://hynek.me/articles/taking-some-pain-out-of-python-logging/].

Additionally – mostly for unit testing – structlog also ships with a logger that just returns whatever it gets passed into it: ReturnLogger.

>>> from structlog import ReturnLogger
>>> ReturnLogger().msg(42) == 42
True
>>> obj = ['hi']
>>> ReturnLogger().msg(obj) is obj
True

Configuration

To make logging as unintrusive and straight-forward to use as possible, structlog comes with a plethora of configuration options and convenience functions.
Let me start at the end and introduce you to the ultimate convenience function that relies purely on configuration: structlog.get_logger() (and its Twisted-friendly alias structlog.getLogger()).

The goal is to reduce your per-file logging boilerplate to:

from structlog.stdlib import get_logger
logger = get_logger()

while still giving you the full power via configuration.

To achieve that you’ll have to call structlog.configure() on app initialization (of course, only if you’re not content with the defaults).
The previous example could thus have been written as following:

>>> configure(processors=[proc], context_class=dict)
>>> log = wrap_logger(PrintLogger())
>>> log.msg('hello world')
I got called with {'event': 'hello world'}
{'event': 'hello world'}

In fact, it could even be written like

>>> configure(processors=[proc], context_class=dict)
>>> log = get_logger()
>>> log.msg('hello world')
I got called with {'event': 'hello world'}
{'event': 'hello world'}

because PrintLogger is the default LoggerFactory used (see Logger Factories).

structlog tries to behave in the least surprising way when it comes to handling defaults and configuration:

	Passed processors, wrapper_class, and context_class arguments to structlog.wrap_logger() always take the highest precedence.
That means that you can overwrite whatever you’ve configured for each logger respectively.

	If you leave them on None, structlog will check whether you’ve configured default values using structlog.configure() and uses them if so.

	If you haven’t configured or passed anything at all, the default fallback values are used which means OrderedDict [http://docs.python.org/2/library/collections.html#collections.OrderedDict] for context and [format_exc_info(), KeyValueRenderer] for the processor chain.

If necessary, you can always reset your global configuration back to default values using structlog.reset_defaults().
That can be handy in tests.

Note

Since you will call structlog.wrap_logger() (or one of the get_logger() functions) most likely at import time and thus before you had a chance to configure structlog, they return a proxy that returns a correct wrapped logger on first bind()/new().

Therefore, you must not call new() or bind() in module scope!
Use get_logger()‘s initial_values to achieve pre-populated contexts.

To enable you to log with the module-global logger, it will create a temporary BoundLogger and relay the log calls to it on each call.
Therefore if you have nothing to bind but intend to do lots of log calls in a function, it makes sense performance-wise to create a local logger by calling bind() or new() without any parameters.

Logger Factories

To make structlog.get_logger() work, one needs one more option that hasn’t been discussed yet: logger_factory.

It is a callable that returns the logger that gets wrapped and returned.
In the simplest case, it’s a function that returns a logger – or just a class.
But you can also pass in an instance of a class with a __call__ method for more complicated setups.

For the common cases of standard library logging and Twisted logging, structlog comes with two factories built right in:

	structlog.stdlib.LoggerFactory

	structlog.twisted.LoggerFactory

So all it takes to use structlog with standard library logging is this:

>>> from structlog import get_logger, configure
>>> from structlog.stdlib import LoggerFactory
>>> configure(logger_factory=LoggerFactory())
>>> log = get_logger()
>>> log.critical('this is too easy!')
event='this is too easy!'

The Twisted example shows how easy it is for Twisted.

Note

LoggerFactory()-style factories always need to get passed as instances like in the examples above.
While neither allows for customization using parameters yet, they may do so in the future.

Calling structlog.get_logger() without configuration gives you a perfectly useful structlog.PrintLogger with the default values exaplained above.
I don’t believe silent loggers are a sensible default.

Where to Configure

The best place to perform your configuration varies with applications and frameworks.
Ideally as late as possible but before non-framework (i.e. your) code is executed.
If you use standard library’s logging, it makes sense to configure them next to each other.

	Django

	Django has to date unfortunately no concept of an application assembler or “app is done” hooks.
Therefore the bottom of your settings.py will have to do.

	Flask

	See Logging Application Errors [http://flask.pocoo.org/docs/errorhandling/].

	Pyramid

	Application constructor [http://docs.pylonsproject.org/projects/pyramid/en/latest/narr/startup.html#the-startup-process].

	Twisted

	The plugin definition [http://twistedmatrix.com/documents/current/core/howto/plugin.html] is the best place.
If your app is not a plugin, put it into your tac file [http://twistedmatrix.com/documents/current/core/howto/application.html] (and then learn [https://bitbucket.org/jerub/twisted-plugin-example] about plugins).

If you have no choice but have to configure on import time in module-global scope, or can’t rule out for other reasons that that your structlog.configure() gets called more than once, structlog offers structlog.configure_once() that raises a warning if structlog has been configured before (no matter whether using structlog.configure() or configure_once()) but doesn’t change anything.

Immutability

You should call some functions with some arguments.

David Reid

The behavior of copying itself, adding new values, and returning the result is useful for applications that keep somehow their own context using classes or closures.
Twisted is a fine example for that.
Another possible approach is passing wrapped loggers around or log only within your view where you gather errors and events using return codes and exceptions.
If you are willing to do that, you should stick to it because immutable state [http://en.wikipedia.org/wiki/Immutable_object] is a very good thing[*].
Sooner or later, global state and mutable data lead to unpleasant surprises.

However, in the case of conventional web development, I realize that passing loggers around seems rather cumbersome, intrusive, and generally against the mainstream culture.
And since it’s more important that people actually use structlog than to be pure and snobby, structlog contains a dirty but convenient trick: thread local context storage which you may already know from Flask [http://flask.pocoo.org/docs/design/#thread-locals].

	[*]	In the spirit of Python’s ‘consenting adults’, structlog doesn’t enforce the immutability with technical means.
However, if you don’t meddle with undocumented data, the objects can be safely considered immutable.

Thread Local Context

Thread local storage makes your logger’s context global but only within the current thread[†].
In the case of web frameworks this usually means that your context becomes global to the current request.

The following explanations may sound a bit confusing at first but the Flask example illustrates how simple and elegant this works in practice.

Wrapped Dicts

In order to make your context thread local, structlog ships with a function that can wrap any dict-like class to make it usable for thread local storage: structlog.threadlocal.wrap_dict().

Within one thread, every instance of the returned class will have a common instance of the wrapped dict-like class:

>>> from structlog.threadlocal import wrap_dict
>>> WrappedDictClass = wrap_dict(dict)
>>> d1 = WrappedDictClass({'a': 1})
>>> d2 = WrappedDictClass({'b': 2})
>>> d3 = WrappedDictClass()
>>> d3['c'] = 3
>>> d1 is d3
False
>>> d1 == d2 == d3 == WrappedDictClass()
True
>>> d3
<WrappedDict-...({'a': 1, 'c': 3, 'b': 2})>

Then use an instance of the generated class as the context class:

configure(context_class=WrappedDictClass())

Note

Remember: the instance of the class doesn’t matter.
Only the class type matters because all instances of one class share the same data.

structlog.threadlocal.wrap_dict() returns always a completely new wrapped class:

>>> AnotherWrappedDictClass = wrap_dict(dict)
>>> WrappedDictClass() != AnotherWrappedDictClass()
True
>>> WrappedDictClass.__name__
WrappedDict-41e8382d-bee5-430e-ad7d-133c844695cc
>>> AnotherWrappedDictClass.__name__
WrappedDict-e0fc330e-e5eb-42ee-bcec-ffd7bd09ad09

In order to be able to bind values temporarily to a logger, structlog.threadlocal comes with a context manager [http://docs.python.org/2/library/stdtypes.html#context-manager-types]: tmp_bind():

>>> log.bind(x=42)
<BoundLogger(context=<WrappedDict-...({'x': 42})>, ...)>
>>> log.msg('event!')
x=42 event='event!'
>>> with tmp_bind(log, x=23, y='foo') as tmp_log:
... tmp_log.msg('another event!')
y='foo' x=23 event='another event!'
>>> log.msg('one last event!')
x=42 event='one last event!'

The state before the with statement is saved and restored once it’s left.

If you want to detach a logger from thread local data, there’s structlog.threadlocal.as_immutable().

Downsides & Caveats

The convenience of having a thread local context comes at a price though:

Warning

	If you can’t rule out that your application re-uses threads, you must remember to initialize your thread local context at the start of each request using new() (instead of bind()).
Otherwise you may start a new request with the context still filled with data from the request before.

	Don’t stop assigning the results of your bind()s and new()s!

Do:

log = log.new(y=23)
log = log.bind(x=42)

Don’t:

log.new(y=23)
log.bind(x=42)

Although the state is saved in a global data structure, you still need the global wrapped logger produce a real bound logger.
Otherwise each log call will result in an instantiation of a temporary BoundLogger.
See Configuration for more details.

The general sentiment against thread locals is that they’re hard to test.
In this case I feel like this is an acceptable trade-off.
You can easily write deterministic tests using a call-capturing processor if you use the API properly (cf. warning above).

This big red box is also what separates immutable local from mutable global data.

	[†]	Special care has been taken to detect and support greenlets properly.

 Copyright 2013, Hynek Schlawack.
 Created using Sphinx 1.1.3.

 Brought to you by Read the Docs

 	latest

 	0.2.0-0

 	0.1.0

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	structlog documentation

Processors

The true power of structlog lies in its combinable log processors.
A log processor is a regular callable, i.e. a function or an instance of a class with a __call__() method.

Chains

The processor chain is a list of processors.
Each processors receives three positional arguments:

	logger

	Your wrapped logger object.
For example logging.Logger [http://docs.python.org/2/library/logging.html#logging.Logger].

	method_name

	The name of the wrapped method.
If you called log.warn('foo'), it will be "warn".

	event_dict

	Current context together with the current event.
If the context was {'a': 42} and the event is "foo", the initial event_dict will be {'a':42, 'event': 'foo'}.

The return value of each processor is passed on to the next one as event_dict until finally the return value of the last processor gets passed into the wrapped logging method.

Examples

If you set up your logger like:

from structlog import BoundLogger, PrintLogger
wrapped_logger = PrintLogger()
logger = BoundLogger.wrap(wrapped_logger, processors=[f1, f2, f3, f4])
log = logger.new(x=42)

and call log.msg('some_event', y=23), it results in the following call chain:

wrapped_logger.msg(
 f4(wrapped_logger, 'msg',
 f3(wrapped_logger, 'msg',
 f2(wrapped_logger, 'msg',
 f1(wrapped_logger, 'msg', {'event': 'some_event', 'x': 42, 'y': 23})
)
)
)
)

In this case, f4 has to make sure it returns something wrapped_logger.msg can handle (see Adapting and Rendering).

The simplest modification a processor can make is adding new values to the event_dict.
Parsing human-readable timestamps is tedious, not so UNIX timestamps [http://en.wikipedia.org/wiki/UNIX_time] – let’s add one to each log entry!

import calendar
import time

def timestamper(logger, log_method, event_dict):
 event_dict['timestamp'] = calendar.timegm(time.gmtime())
 return event_dict

Easy, isn’t it?
Please note, that structlog comes with such an processor built in: TimeStamper.

Filtering

If a processor raises structlog.DropEvent, the event is silently dropped.

Therefore, the following processor drops every entry:

from structlog import DropEvent

def dropper(logger, method_name, event_dict):
 raise DropEvent

But we can do better than that!

How about dropping only log entries that are marked as coming from a certain peer (e.g. monitoring)?

from structlog import DropEvent

class ConditionalDropper(object):
 def __init__(self, peer_to_ignore):
 self._peer_to_ignore = peer_to_ignore

 def __call__(self, logger, method_name, event_dict):
 """
 >>> cd = ConditionalDropper('127.0.0.1')
 >>> cd(None, None, {'event': 'foo', 'peer': '10.0.0.1'})
 {'peer': '10.0.0.1', 'event': 'foo'}
 >>> cd(None, None, {'event': 'foo', 'peer': '127.0.0.1'})
 Traceback (most recent call last):
 ...
 DropEvent
 """
 if event_dict.get('peer') == self._peer_to_ignore:
 raise DropEvent
 else:
 return event_dict

Adapting and Rendering

An important role is played by the last processor because its duty is to adapt the event_dict into something the underlying logging method understands.
With that, it’s also the only processor that needs to know anything about the underlying system.

For that, it can either return a string that is passed as the first (and only) positional argument to the underlying logger or a tuple of (args, kwargs) that are passed as log_method(*args, **kwargs).
Therefore return 'hello world' is a shortcut for return (('hello world',), {}) (the example in Chains assumes this shortcut has been taken).

This should give you enough power to use structlog with any logging system while writing agnostic processors that operate on dictionaries.

Examples

The probably most useful formatter for string based loggers is JSONRenderer.
Advanced log aggregation and analysis tools like logstash [http://logstash.net] offer features like telling them “this is JSON, deal with it” instead of fiddling with regular expressions.

More examples can be found in the examples chapter.
For a list of shipped processors, check out the API documentation.

 Copyright 2013, Hynek Schlawack.
 Created using Sphinx 1.1.3.

 Brought to you by Read the Docs

 	latest

 	0.2.0-0

 	0.1.0

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	structlog documentation

Twisted Support

Additionally to the smart logger wrappers JSONRenderer and EventAdapter that make sure that your log entries are well-formatted, structlog comes with a wrapper for Twisted’s log observers to ensure the rest of your logs are in JSON too: JSONLogObserverWrapper().

What it does is determining whether a log entry has been formatted by JSONRenderer and if not, converts the log entry to JSON with event being the log message and putting Twisted’s system into a second key.

So for example:

2013-09-15 22:02:18+0200 [-] Log opened.

becomes:

2013-09-15 22:02:18+0200 [-] {"event": "Log opened.", "system": "-"}

There is obviously some redundancy here.
Also, I’m presuming that if you write out JSON logs, you’re going to let something else parse them which makes the human-readable date entries more trouble than they’re worth.

Logging Best Practices

To get a clean log without timestamps and additional system fields ([-]), structlog comes with PlainFileLogObserver that only writes the plain message to a file and plainJSONStdOutLogger() that composes it with the afromentioned JSONLogObserverWrapper() and gives you a pure JSON log without any timestamps or other noise.

And finally, to get fast and efficiently machine-readable timestamps, you can either pipe your output to tai64n [http://cr.yp.to/daemontools/tai64n.html] or use runit [http://smarden.org/runit/] in the first place.
If you have only moderate amounts of log entries, you can also just send them to syslogd [http://en.wikipedia.org/wiki/Syslogd].

 Copyright 2013, Hynek Schlawack.
 Created using Sphinx 1.1.3.

 Brought to you by Read the Docs

 	latest

 	0.2.0-0

 	0.1.0

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	structlog documentation

Examples

This chapter is intended to give you a taste of realistic usage of structlog.

Flask and Thread Local Data

In the simplest case, you bind a unique request ID to every incoming request so you can easily see which log entries belong to which request.

import uuid

import flask
import structlog

from .some_module import some_function

logger = structlog.get_logger()
app = flask.Flask(__name__)

@app.route('/login', methods=['POST', 'GET'])
def some_route():
 log = logger.new(
 request_id=str(uuid.uuid4()),
)
 # do something
 # ...
 log.info('user logged in', user='test-user')
 # gives you:
 # event='user logged in' request_id='ffcdc44f-b952-4b5f-95e6-0f1f3a9ee5fd' user='test-user'
 # ...
 some_function()
 # ...

if __name__ == "__main__":
 structlog.configure(
 processors=[
 structlog.processors.KeyValueRenderer(
 key_order=['event', 'request_id'],
),
],
 context_class=structlog.threadlocal.wrap_dict(dict),
 logger_factory=structlog.stdlib.LoggerFactory(),
)
 app.run()

some_module.py

from structlog import get_logger

logger = get_logger()

def some_function():
 # later then:
 logger.error('user did something', something='shot_in_foot')
 # gives you:
 # event='user did something 'request_id='ffcdc44f-b952-4b5f-95e6-0f1f3a9ee5fd' something='shot_in_foot'

While wrapped loggers are immutable by default, this example demonstrates how to circumvent that using a thread local dict implementation for context data for convenience (hence the requirement for using new() for re-initializing the logger).

Please note that structlog.stdlib.LoggerFactory is a totally magic-free class that just deduces the name of the caller’s module and does a logging.getLogger() [http://docs.python.org/2/library/logging.html#logging.getLogger]. with it.
It’s used by structlog.get_logger() to rid you of logging boilerplate in application code.

Twisted, and Logging Out Objects

If you prefer to log less but with more context in each entry, you can bind everything important to your logger and log it out with each log entry.

import sys
import uuid

import structlog
import twisted

from twisted.internet import protocol, reactor

logger = structlog.get_logger()

class Counter(object):
 i = 0

 def inc(self):
 self.i += 1

 def __repr__(self):
 return str(self.i)

class Echo(protocol.Protocol):
 def connectionMade(self):
 self._counter = Counter()
 self._log = logger.new(
 connection_id=str(uuid.uuid4()),
 peer=self.transport.getPeer().host,
 count=self._counter,
)

 def dataReceived(self, data):
 self._counter.inc()
 log = self._log.bind(data=data)
 self.transport.write(data)
 log.msg('echoed data!')

if __name__ == "__main__":
 structlog.configure(
 processors=[structlog.twisted.EventAdapter()],
 logger_factory=structlog.twisted.LoggerFactory(),
)
 twisted.python.log.startLogging(sys.stderr)
 reactor.listenTCP(1234, protocol.Factory.forProtocol(Echo))
 reactor.run()

gives you something like:

... peer='127.0.0.1' connection_id='1c6c0cb5-...' count=1 data='123\n' event='echoed data!'
... peer='127.0.0.1' connection_id='1c6c0cb5-...' count=2 data='456\n' event='echoed data!'
... peer='127.0.0.1' connection_id='1c6c0cb5-...' count=3 data='foo\n' event='echoed data!'
... peer='10.10.0.1' connection_id='85234511-...' count=1 data='cba\n' event='echoed data!'
... peer='127.0.0.1' connection_id='1c6c0cb5-...' count=4 data='bar\n' event='echoed data!'

Since Twisted’s logging system is a bit peculiar, structlog ships with an adapter so it keeps behaving like you’d expect it to behave.

I’d also like to point out the Counter class that doesn’t do anything spectacular but gets bound once per connection to the logger and since its repr is the number itself, it’s logged out correctly for each event.
This shows off the strength of keeping a dict of objects for context instead of passing around serialized strings.

Processors

Processors are a both simple and powerful feature of structlog.

So you want timestamps as part of the structure of the log entry, censor passwords, filter out log entries below your log level before they even get rendered, and get your output as JSON for convenient parsing?
Here you go:

>>> import datetime, logging, sys
>>> from structlog import wrap_logger
>>> from structlog.processors import JSONRenderer
>>> from structlog.stdlib import filter_by_level
>>> logging.basicConfig(stream=sys.stdout, format='%(message)s')
>>> def add_timestamp(_, __, event_dict):
... event_dict['timestamp'] = datetime.datetime.utcnow()
... return event_dict
>>> def censor_password(_, __, event_dict):
... pw = event_dict.get('password')
... if pw:
... event_dict['password'] = '*CENSORED*'
... return event_dict
>>> log = wrap_logger(
... logging.getLogger(__name__),
... processors=[
... filter_by_level,
... add_timestamp,
... censor_password,
... JSONRenderer(indent=1, sort_keys=True)
...]
...)
>>> log.info('something.filtered')
>>> log.warning('something.not_filtered', password='secret')
{
 "event": "something.not_filtered",
 "password": "*CENSORED*",
 "timestamp": "datetime.datetime(..., ..., ..., ..., ...)"
}

structlog comes with many handy processors build right in – for a list of shipped processors, check out the API documentation.

Custom Wrapper Classes

A custom wrapper class helps you to cast the shackles of your underlying logging system even further and get rid of even more boilerplate.

>>> from structlog import BoundLogger, PrintLogger, wrap_logger
>>> class SemanticLogger(BoundLogger):
... def msg(self, event, **kw):
... if not 'status' in kw:
... self.info(event, status='ok', **kw)
... else:
... self.info(event, **kw)
...
... def user_error(self, event, **kw):
... self.msg(event, status='user_error', **kw)
>>> log = wrap_logger(PrintLogger(), wrapper_class=SemanticLogger)
>>> log = log.bind(user='fprefect')
>>> log.user_error('user.forgot_towel')
user='fprefect' status='user_error' event='user.forgot_towel'

I like to have semantically meaningful logger names.
If you agree, this is a nice way to achieve that.

Of course, you can configure default processors, the wrapper class and the context classes globally.

 Copyright 2013, Hynek Schlawack.
 Created using Sphinx 1.1.3.

 Brought to you by Read the Docs

 	latest

 	0.2.0-0

 	0.1.0

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	structlog documentation

structlog Package

structlog Package

	
structlog.get_logger(**initial_values)

	Convenience function that returns a logger according to configuration.

>>> from structlog import get_logger
>>> log = get_logger(y=23)
>>> log.msg('hello', x=42)
y=23 x=42 event='hello'

	Parameters:	initial_values – Values that are used to pre-populate your contexts.

See Configuration for details.

If you prefer CamelCase, there’s an alias for your reading pleasure:
structlog.getLogger().

	
structlog.getLogger(**initial_values)

	CamelCase alias for structlog.get_logger().

This function is supposed to be in every source file – I don’t want it to
stick out like a sore thumb in frameworks like Twisted or Zope.

	
structlog.wrap_logger(logger, processors=None, wrapper_class=None, context_class=None, **initial_values)

	Create a new bound logger for an arbitrary logger.

Default values for processors, wrapper_class, and context_class can
be set using configure().

If you set processors or context_class here, calls to
configure() have no effect for the respective attribute.

In other words: selective overwriting of the defaults is possible.

	Parameters:	
	logger – An instance of a logger whose method calls will be
wrapped. Use configured logger factory if None.

	processors (list of callables) – List of processors.

	wrapper_class (type) – Class to use for wrapping loggers instead of
structlog.BoundLogger.

	context_class (type) – Class to be used for internal dictionary.

	Return type:	A proxy that creates a correctly configured bound logger when
necessary.

	
structlog.configure(processors=None, wrapper_class=None, context_class=None, logger_factory=None)

	Configures the global defaults.

They are used if wrap_logger() has been called without arguments.

Also sets the global class attribute is_configured to True on
first call. Can be called several times, keeping an argument at None
leaves is unchanged from the current setting.

Use reset_defaults() to undo your changes.

	Parameters:	
	processors (list) – List of processors.

	wrapper_class (type) – Class to use for wrapping loggers instead of
structlog.BoundLogger.

	context_class – Class to be used for internal dictionary.

	
structlog.configure_once(*args, **kw)

	Configures iff structlog isn’t configured yet.

It does not matter whether is was configured using configure()
or configure_once() before.

Raises a RuntimeWarning if repeated configuration is attempted.

	
structlog.reset_defaults()

	Resets global default values to builtins.

That means [format_exc_info(),
KeyValueRenderer] for processors,
BoundLogger for wrapper_class, OrderedDict for
context_class, and PrintLogger for logger_factory.

Also sets the global class attribute is_configured to True.

	
class structlog.BoundLogger(logger, processors, context)

	Immutable, context-carrying wrapper.

Public only for sub-classing, not intended to be instantiated by yourself.
See wrap_logger() and get_logger().

	
new(**new_values)

	Clear context and binds initial_values using bind().

Only necessary with dict implementations that keep global state like
those wrapped by structlog.threadlocal.wrap_dict() when threads
are re-used.

	Return type:	BoundLogger

	
bind(**new_values)

	Return a new logger with new_values added to the existing ones.

	Return type:	BoundLogger

	
unbind(*keys)

	Return a new logger with keys removed from the context.

	Raises KeyError:

		If the key is not part of the context.

	Return type:	BoundLogger

	
class structlog.PrintLogger(file=None)

	Prints events into a file.

	Parameters:	file (file) – File to print to. (default: stdout)

>>> from structlog import PrintLogger
>>> PrintLogger().msg('hello')
hello

Useful if you just capture your stdout with tools like runit [http://smarden.org/runit/] or if you forward your stderr to syslog [http://hynek.me/articles/taking-some-pain-out-of-python-logging/].

Also very useful for testing and examples since logging is sometimes
finicky in doctests.

	
msg(message)

	Print message.

	
err(message)

	Print message.

	
info(message)

	Print message.

	
warning(message)

	Print message.

	
error(message)

	Print message.

	
critical(message)

	Print message.

	
log(message)

	Print message.

	
class structlog.ReturnLogger

	Returns the string that it’s called with.

>>> from structlog import ReturnLogger
>>> ReturnLogger().msg('hello')
'hello'

Useful for unit tests.

	
exception structlog.DropEvent

	If raised by an processor, the event gets silently dropped.

Derives from BaseException because it’s technically not an error.

threadlocal Module

Primitives to keep context global but thread (and greenlet) local.

	
structlog.threadlocal.wrap_dict(dict_class)[source]

	Wrap a dict-like class and return the resulting class.

The wrapped class and used to keep global in the current thread.

	Parameters:	dict_class (type) – Class used for keeping context.

	Return type:	type

	
structlog.threadlocal.tmp_bind(logger, **tmp_values)[source]

	Bind tmp_values to logger & memorize current state. Rewind afterwards.

>>> from structlog import wrap_logger, PrintLogger
>>> from structlog.threadlocal import tmp_bind, wrap_dict
>>> logger = wrap_logger(PrintLogger(), context_class=wrap_dict(dict))
>>> with tmp_bind(logger, x=5) as tmp_logger:
... logger = logger.bind(y=3)
... tmp_logger.msg('event')
y=3 x=5 event='event'
>>> logger.msg('event')
event='event'

	
structlog.threadlocal.as_immutable(logger)[source]

	Extract the context from a thread local logger into an immutable logger.

	Parameters:	logger (BoundLogger) – A logger with possibly thread local state.

	Return type:	BoundLogger with an immutable context.

processors Module

Processors useful regardless of the logging framework.

	
class structlog.processors.JSONRenderer(**dumps_kw)[source]

	Bases: object

Render the event_dict using json.dumps(event_dict, **json_kw).

	Parameters:	json_kw – Are passed unmodified to json.dumps().

>>> from structlog.processors import JSONRenderer
>>> JSONRenderer(sort_keys=True)(None, None, {'a': 42, 'b': [1, 2, 3]})
'{"a": 42, "b": [1, 2, 3]}'

Bound objects are attempted to be serialize using a __structlog__`
method. If none is defined, ``repr() is used:

>>> class C1(object):
... def __structlog__(self):
... return ['C1!']
... def __repr__(self):
... return '__structlog__ took precedence'
>>> class C2(object):
... def __repr__(self):
... return 'No __structlog__, so this is used.'
>>> from structlog.processors import JSONRenderer
>>> JSONRenderer(sort_keys=True)(None, None, {'c1': C1(), 'c2': C2()})
'{"c1": ["C1!"], "c2": "No __structlog__, so this is used."}'

Please note that additionally to strings, you can also return any type
the standard library JSON module knows about – like in this example
a list.

Changed in version 0.2.0: Added support for __structlog__ serialization method.

	
class structlog.processors.KeyValueRenderer(sort_keys=False, key_order=None)[source]

	Bases: object

Render event_dict as a list of Key=repr(Value) pairs.

	Parameters:	
	sort_keys (bool) – Whether to sort keys when formatting.

	key_order (list) – List of keys that should be rendered in this exact
order. Missing keys will be rendered as None, extra keys depending
on sort_keys and the dict class.

New in version 0.2.0.

>>> from structlog.processors import KeyValueRenderer
>>> KeyValueRenderer(sort_keys=True)(None, None, {'a': 42, 'b': [1, 2, 3]})
'a=42 b=[1, 2, 3]'
>>> KeyValueRenderer(key_order=['b', 'a'])(None, None,
... {'a': 42, 'b': [1, 2, 3]})
'b=[1, 2, 3] a=42'

	
class structlog.processors.TimeStamper(fmt=None, utc=True)[source]

	Bases: object

Add a timestamp to event_dict.

	Parameters:	
	format (str) – strftime format string, or "iso" for ISO 8601 [http://en.wikipedia.org/wiki/ISO_8601], or None for a UNIX
timestamp [http://en.wikipedia.org/wiki/Unix_time].

	utc (bool) – Whether timestamp should be in UTC or local time.

>>> from structlog.processors import TimeStamper
>>> TimeStamper()(None, None, {})
{'timestamp': 1378994017}
>>> TimeStamper(fmt='iso')(None, None, {})
{'timestamp': '2013-09-12T13:54:26.996778Z'}
>>> TimeStamper(fmt='%Y')(None, None, {})
{'timestamp': '2013'}

	
class structlog.processors.UnicodeEncoder(encoding='utf-8', errors='backslashreplace')[source]

	Bases: object

Encode unicode values in event_dict.

	Parameters:	
	encoding (str) – Encoding to encode to (default: 'utf-8'.

	errors (str) – How to cope with encoding errors (default
'backslashreplace').

Useful for KeyValueRenderer if you don’t want to see u-prefixes:

>>> from structlog.processors import KeyValueRenderer, UnicodeEncoder
>>> KeyValueRenderer()(None, None, {'foo': u'bar'})
"foo=u'bar'"
>>> KeyValueRenderer()(None, None,
... UnicodeEncoder()(None, None, {'foo': u'bar'}))
"foo='bar'"

Just put it in the processor chain before KeyValueRenderer.

	
structlog.processors.format_exc_info(logger, name, event_dict)[source]

	Replace an exc_info field by an exception string field:

If event_dict contains the key exc_info, there are two possible
behaviors:

	If the value is a tuple, render it into the key exception.

	If the value true but no tuple, obtain exc_info ourselves and render
that.

If there is no exc_info key, the event_dict is not touched.
This behavior is analogue to the one of the stdlib’s logging.

>>> from structlog.processors import format_exc_info
>>> try:
... raise ValueError
... except ValueError:
... format_exc_info(None, None, {'exc_info': True})
{'exception': 'Traceback (most recent call last):...

stdlib Module

Processors and helpers specific to the logging module [http://docs.python.org/2/library/logging.html] from the Python standard
library [http://docs.python.org/].

	
class structlog.stdlib.LoggerFactory[source]

	Build a standard library logger when an instance is called.

>>> from structlog import configure
>>> from structlog.stdlib import LoggerFactory
>>> configure(logger_factory=LoggerFactory())

	
__call__()[source]

	Deduces the caller’s module name and create a stdlib logger.

	Return type:	logging.Logger

	
structlog.stdlib.filter_by_level(logger, name, event_dict)[source]

	Check whether logging is configured to accept messages from this log level.

Should be the first processor if stdlib’s filtering by level is used so
possibly expensive processors like exception formatters are avoided in the
first place.

>>> import logging
>>> from structlog.stdlib import filter_by_level
>>> logging.basicConfig(level=logging.WARN)
>>> logger = logging.getLogger()
>>> filter_by_level(logger, 'warn', {})
{}
>>> filter_by_level(logger, 'debug', {})
Traceback (most recent call last):
...
DropEvent

twisted Module

Processors and tools specific to the Twisted [http://twistedmatrix.com/]
networking engine.

	
class structlog.twisted.LoggerFactory[source]

	Build a Twisted logger when an instance is called.

>>> from structlog import configure
>>> from structlog.twisted import LoggerFactory
>>> configure(logger_factory=LoggerFactory())

	
class structlog.twisted.EventAdapter(dictRenderer=None)[source]

	Adapt an event_dict to Twisted logging system.

Particularly, make a wrapped twisted.python.log.err [http://twistedmatrix.com/documents/current/api/twisted.python.log.html#err] behave as expected.

	Parameters:	dictRenderer (callable) – Renderer that is used for the actual
log message. Please note that structlog comes with a dedicated
JSONRenderer.

Must be the last processor in the chain and requires a dictRenderer
for the actual formatting as an constructor argument in order to be able to
fully support the original behaviors of log.msg() and log.err().

	
class structlog.twisted.JSONRenderer(**dumps_kw)[source]

	Behaves like structlog.processors.JSONRenderer except that it
formats tracebacks and failures itself if called with err().

Not an adapter like EventAdapter but a real formatter. Nor does
it require to be adapted using it.

Use together with a withJSONObserver()-wrapped Twisted logger like
plainJSONStdOutLogger() for pure-JSON logs.

	
structlog.twisted.plainJSONStdOutLogger()[source]

	Return a logger that writes only the message to stdout.

Transforms non-JSONRenderer messages to JSON.

Ideal for JSONifying log entries from Twisted plugins and libraries that
are outside of your control:

$ twistd -n --logger structlog.twisted.plainJSONStdOutLogger web
{"event": "Log opened.", "system": "-"}
{"event": "twistd 13.1.0 (python 2.7.3) starting up.", "system": "-"}
{"event": "reactor class: twisted...EPollReactor.", "system": "-"}
{"event": "Site starting on 8080", "system": "-"}
{"event": "Starting factory <twisted.web.server.Site ...>", ...}
...

Composes PlainFileLogObserver and JSONLogObserverWrapper
to a usable logger.

New in version 0.2.0.

	
structlog.twisted.JSONLogObserverWrapper(observer)[source]

	Wrap a log observer and render non-JSONRenderer entries to JSON.

	Parameters:	observer (ILogObserver) – Twisted log observer to wrap. For example
PlainFileObserver or Twisted’s stock FileLogObserver [http://twistedmatrix.com/documents/current/api/twisted.python.log.FileLogObserver.html]

New in version 0.2.0.

	
class structlog.twisted.PlainFileLogObserver(file)[source]

	Write only the the plain message without timestamps or anything else.

Great to just print JSON to stdout where you catch it with something like
runit.

	Parameters:	file (file) – File to print to.

New in version 0.2.0.

 Copyright 2013, Hynek Schlawack.
 Created using Sphinx 1.1.3.

 Brought to you by Read the Docs

 	latest

 	0.2.0-0

 	0.1.0

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	structlog documentation

How To Contribute

Every open source project lives from the generous help by contributors that sacrifice their time and structlog is no different.

To make participation as pleasant as possible, this project adheres to the Code of Conduct [http://www.python.org/psf/codeofconduct/] by the Python Software Foundation.

Here are a few hints and rules to get you started:

	Add yourself to the AUTHORS.rst [https://github.com/hynek/structlog/blob/master/AUTHORS.rst] file in an alphabetical fashion.
Every contribution is valuable and shall be credited.

	If your change is noteworthy, add an entry to the changelog [https://github.com/hynek/structlog/blob/master/docs/changelog.rst].

	No contribution is too small; please submit as many fixes for typos and grammar bloopers as you can!

	Don’t ever break backward compatibility.
Although structlog follows semantic versioning [http://semver.org], it is infrastructure people rely on and which isn’t mustn’t ever break by updating.
If it ever has to happen for higher reasons, structlog will follow the proven procedures [http://twistedmatrix.com/trac/wiki/CompatibilityPolicy] of the Twisted project.

	Always add tests and docs for your code.
This is a hard rule; patches with missing tests or documentation won’t be merged – if a feature is not tested or documented, it doesn’t exist.

	Obey PEP 8 [http://www.python.org/dev/peps/pep-0008/] and PEP 257 [http://www.python.org/dev/peps/pep-0257/].
Twisted-specific modules use CamelCase.

	Write good commit messages [http://tbaggery.com/2008/04/19/a-note-about-git-commit-messages.html].

	Ideally, squash [http://gitready.com/advanced/2009/02/10/squashing-commits-with-rebase.html] your commits, i.e. make your pull requests just one commit.

Note

If you have something great but aren’t sure whether it adheres – or even can adhere – to the rules above: please submit a pull request anyway!

In the best case, we can mold it into something, in the worst case the pull request gets politely closed.
There’s absolutely nothing to fear.

Thank you for considering to contribute to structlog!
If you have any question or concerns, feel free to reach out to me – there is also a #structlog channel on freenode [http://freenode.net].

 Copyright 2013, Hynek Schlawack.
 Created using Sphinx 1.1.3.

 Brought to you by Read the Docs

 	latest

 	0.2.0-0

 	0.1.0

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	structlog documentation

License and Hall of Fame

structlog is licensed under the permissive Apache License, Version 2 [http://choosealicense.com/licenses/apache/].
The full license text can be also found in the source code repository [https://github.com/hynek/structlog/blob/master/LICENSE].

Authors

structlog is written and maintained by Hynek Schlawack [http://hynek.me/].
It’s inspired by previous work done by Jean-Paul Calderone [http://as.ynchrono.us] and David Reid [http://dreid.org].

The development is kindly supported by Variomedia AG [https://www.variomedia.de/].

The following folks helped forming structlog into what it is now:

	Alex Gaynor [https://github.com/alex]

	Christopher Armstrong [https://github.com/radeex]

	Daniel Lindsley [https://github.com/toastdriven]

	David Reid [http://dreid.org]

	Donald Stufft [https://github.com/dstufft]

	Glyph [https://github.com/glyph]

	Holger Krekel [https://github.com/hpk42]

	Itamar Turner-Trauring [https://github.com/itamarst]

	Jack Pearkes [https://github.com/pearkes]

	Jean-Paul Calderone [http://as.ynchrono.us]

	Lynn Root [https://github.com/econchick]

	Noah Kantrowitz [https://github.com/coderanger]

	Tarek Ziadé [https://github.com/tarekziade]

	Thomas Heinrichsdobler [https://github.com/dertyp]

	Tom Lazar [https://github.com/tomster]

Some of them disapprove of the addition of thread local context data. :)

Third Party Code

The compatibility code that makes this software run on both Python 2 and 3 is heavily inspired and partly copy and pasted from the MIT [http://choosealicense.com/licenses/mit/]-licensed six [https://bitbucket.org/gutworth/six/] by Benjamin Peterson.
The only reason why it’s not used as a dependency is to avoid any runtime dependency in the first place.

 Copyright 2013, Hynek Schlawack.
 Created using Sphinx 1.1.3.

 Brought to you by Read the Docs

 	latest

 	0.2.0-0

 	0.1.0

 Navigation

 	
 index

 	
 modules |

 	
 previous |

 	structlog documentation

Changelog

0.2.0 [https://github.com/hynek/structlog/tree/0.2.0] 2013-09-17

	[Feature]: Allow for custom serialization in structlog.twisted.JSONRenderer without abusing __repr__.

	[Feature]: Enhance Twisted support by offering JSONification of non-structlog log entries.

	[Feature]: structlog.PrintLogger now uses proper I/O routines and is thus viable not only for examples but also for production.

	[Feature]: Add key_order option to structlog.processors.KeyValueRenderer for more predictable log entries with any dict class.

	[Feature]: Promote to stable, thus henceforth a strict backward compatibility policy is put into effect.
See How To Contribute.

0.1.0 [https://github.com/hynek/structlog/tree/0.1.0] 2013-09-16

	[Feature]: Initial work.

 Copyright 2013, Hynek Schlawack.
 Created using Sphinx 1.1.3.

 Brought to you by Read the Docs

 	latest

 	0.2.0-0

 	0.1.0

 Navigation

 	
 index

 	
 modules |

 	structlog documentation

 Python Module Index

 s

 			

 		
 s	

 	[image: -]
 	
 structlog	

 	
 	
 structlog.processors	

 	
 	
 structlog.stdlib	

 	
 	
 structlog.threadlocal	

 	
 	
 structlog.twisted	

 Copyright 2013, Hynek Schlawack.
 Created using Sphinx 1.1.3.

 Brought to you by Read the Docs

 	latest

 	0.2.0-0

 	0.1.0

 Navigation

 	
 index

 	
 modules |

 	structlog documentation

Index

 _
 | A
 | B
 | C
 | D
 | E
 | F
 | G
 | I
 | J
 | K
 | L
 | M
 | N
 | P
 | R
 | S
 | T
 | U
 | W

_

 	

 	__call__() (structlog.stdlib.LoggerFactory method)

A

 	

 	as_immutable() (in module structlog.threadlocal)

B

 	

 	bind() (structlog.BoundLogger method)

 	

 	BoundLogger (class in structlog)

C

 	

 	configure() (in module structlog)

 	configure_once() (in module structlog)

 	

 	critical() (structlog.PrintLogger method)

D

 	

 	DropEvent

E

 	

 	err() (structlog.PrintLogger method)

 	error() (structlog.PrintLogger method)

 	

 	EventAdapter (class in structlog.twisted)

F

 	

 	filter_by_level() (in module structlog.stdlib)

 	

 	format_exc_info() (in module structlog.processors)

G

 	

 	get_logger() (in module structlog)

 	

 	getLogger() (in module structlog)

I

 	

 	info() (structlog.PrintLogger method)

J

 	

 	JSONLogObserverWrapper() (in module structlog.twisted)

 	

 	JSONRenderer (class in structlog.processors)

 	

 	(class in structlog.twisted)

K

 	

 	KeyValueRenderer (class in structlog.processors)

L

 	

 	log() (structlog.PrintLogger method)

 	

 	LoggerFactory (class in structlog.stdlib)

 	

 	(class in structlog.twisted)

M

 	

 	msg() (structlog.PrintLogger method)

N

 	

 	new() (structlog.BoundLogger method)

P

 	

 	PlainFileLogObserver (class in structlog.twisted)

 	plainJSONStdOutLogger() (in module structlog.twisted)

 	

 	PrintLogger (class in structlog)

R

 	

 	reset_defaults() (in module structlog)

 	

 	ReturnLogger (class in structlog)

S

 	

 	structlog (module)

 	structlog.processors (module)

 	structlog.stdlib (module)

 	

 	structlog.threadlocal (module)

 	structlog.twisted (module)

T

 	

 	TimeStamper (class in structlog.processors)

 	

 	tmp_bind() (in module structlog.threadlocal)

U

 	

 	unbind() (structlog.BoundLogger method)

 	

 	UnicodeEncoder (class in structlog.processors)

W

 	

 	warning() (structlog.PrintLogger method)

 	wrap_dict() (in module structlog.threadlocal)

 	

 	wrap_logger() (in module structlog)

 Copyright 2013, Hynek Schlawack.
 Created using Sphinx 1.1.3.

 Brought to you by Read the Docs

 	latest

 	0.2.0-0

 	0.1.0

 _modules/structlog/processors.html

 Navigation

 		
 index

 		
 modules |

 		structlog documentation »

 		Module code »

 		structlog »

 Source code for structlog.processors

Copyright 2013 Hynek Schlawack
#
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
#
http://www.apache.org/licenses/LICENSE-2.0
#
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.

"""
Processors useful regardless of the logging framework.
"""

from __future__ import absolute_import, division, print_function

import calendar
import datetime
import json
import operator
import sys
import time
import traceback

from structlog._compat import StringIO, unicode_type

[docs]class KeyValueRenderer(object):
 """
 Render `event_dict` as a list of ``Key=repr(Value)`` pairs.

 :param bool sort_keys: Whether to sort keys when formatting.
 :param list key_order: List of keys that should be rendered in this exact
 order. Missing keys will be rendered as `None`, extra keys depending
 on *sort_keys* and the dict class.

 .. versionadded:: 0.2.0

 >>> from structlog.processors import KeyValueRenderer
 >>> KeyValueRenderer(sort_keys=True)(None, None, {'a': 42, 'b': [1, 2, 3]})
 'a=42 b=[1, 2, 3]'
 >>> KeyValueRenderer(key_order=['b', 'a'])(None, None,
 ... {'a': 42, 'b': [1, 2, 3]})
 'b=[1, 2, 3] a=42'
 """
 def __init__(self, sort_keys=False, key_order=None):
 # Use an optimized version for each case.
 if key_order and sort_keys:
 def ordered_items(event_dict):
 items = []
 for key in key_order:
 value = event_dict.pop(key, None)
 items.append((key, value))
 items += sorted(event_dict.items())
 return items
 elif key_order:
 def ordered_items(event_dict):
 items = []
 for key in key_order:
 value = event_dict.pop(key, None)
 items.append((key, value))
 items += event_dict.items()
 return items
 elif sort_keys:
 def ordered_items(event_dict):
 return sorted(event_dict.items())
 else:
 ordered_items = operator.methodcaller('items')

 self._ordered_items = ordered_items

 def __call__(self, _, __, event_dict):
 return ' '.join(k + '=' + repr(v)
 for k, v in self._ordered_items(event_dict))

[docs]class UnicodeEncoder(object):
 """
 Encode unicode values in `event_dict`.

 :param str encoding: Encoding to encode to (default: ``'utf-8'``.
 :param str errors: How to cope with encoding errors (default
 ``'backslashreplace'``).

 Useful for :class:`KeyValueRenderer` if you don't want to see u-prefixes:

 >>> from structlog.processors import KeyValueRenderer, UnicodeEncoder
 >>> KeyValueRenderer()(None, None, {'foo': u'bar'})
 "foo=u'bar'"
 >>> KeyValueRenderer()(None, None,
 ... UnicodeEncoder()(None, None, {'foo': u'bar'}))
 "foo='bar'"

 Just put it in the processor chain before `KeyValueRenderer`.
 """
 def __init__(self, encoding='utf-8', errors='backslashreplace'):
 self._encoding = encoding
 self._errors = errors

 def __call__(self, logger, name, event_dict):
 for key, value in event_dict.items():
 if isinstance(value, unicode_type):
 event_dict[key] = value.encode(self._encoding, self._errors)
 return event_dict

[docs]class JSONRenderer(object):
 """
 Render the `event_dict` using `json.dumps(event_dict, **json_kw)`.

 :param json_kw: Are passed unmodified to `json.dumps()`.

 >>> from structlog.processors import JSONRenderer
 >>> JSONRenderer(sort_keys=True)(None, None, {'a': 42, 'b': [1, 2, 3]})
 '{"a": 42, "b": [1, 2, 3]}'

 Bound objects are attempted to be serialize using a ``__structlog__`
 method. If none is defined, ``repr()`` is used:

 >>> class C1(object):
 ... def __structlog__(self):
 ... return ['C1!']
 ... def __repr__(self):
 ... return '__structlog__ took precedence'
 >>> class C2(object):
 ... def __repr__(self):
 ... return 'No __structlog__, so this is used.'
 >>> from structlog.processors import JSONRenderer
 >>> JSONRenderer(sort_keys=True)(None, None, {'c1': C1(), 'c2': C2()})
 '{"c1": ["C1!"], "c2": "No __structlog__, so this is used."}'

 Please note that additionally to strings, you can also return any type
 the standard library JSON module knows about -- like in this example
 a list.

 .. versionchanged:: 0.2.0
 Added support for ``__structlog__`` serialization method.
 """
 def __init__(self, **dumps_kw):
 self._dumps_kw = dumps_kw

 def __call__(self, logger, name, event_dict):
 return json.dumps(event_dict, cls=_JSONFallbackEncoder,
 **self._dumps_kw)

class _JSONFallbackEncoder(json.JSONEncoder):
 """
 Serialize custom datatypes and pass the rest to __structlog__ & repr().
 """
 def default(self, obj):
 """
 Serialize obj with repr(obj) as fallback.
 """
 # circular imports :(
 from structlog.threadlocal import _ThreadLocalDictWrapper
 if isinstance(obj, _ThreadLocalDictWrapper):
 return obj._dict
 else:
 try:
 return obj.__structlog__()
 except AttributeError:
 return repr(obj)

[docs]def format_exc_info(logger, name, event_dict):
 """
 Replace an `exc_info` field by an `exception` string field:

 If *event_dict* contains the key ``exc_info``, there are two possible
 behaviors:

 - If the value is a tuple, render it into the key ``exception``.
 - If the value true but no tuple, obtain exc_info ourselves and render
 that.

 If there is no ``exc_info`` key, the *event_dict* is not touched.
 This behavior is analogue to the one of the stdlib's logging.

 >>> from structlog.processors import format_exc_info
 >>> try:
 ... raise ValueError
 ... except ValueError:
 ... format_exc_info(None, None, {'exc_info': True})# doctest: +ELLIPSIS
 {'exception': 'Traceback (most recent call last):...
 """
 exc_info = event_dict.pop('exc_info', None)
 if exc_info:
 if not isinstance(exc_info, tuple):
 exc_info = sys.exc_info()
 event_dict['exception'] = _format_exception(exc_info)
 return event_dict

def _format_exception(exc_info):
 """
 Prettyprint an `exc_info` tuple.

 Shamelessly stolen from stdlib's logging module.
 """
 sio = StringIO()
 traceback.print_exception(exc_info[0], exc_info[1], exc_info[2], None, sio)
 s = sio.getvalue()
 sio.close()
 if s[-1:] == "\n":
 s = s[:-1]
 return s

[docs]class TimeStamper(object):
 """
 Add a timestamp to `event_dict`.

 :param str format: strftime format string, or ``"iso"`` for `ISO 8601
 <http://en.wikipedia.org/wiki/ISO_8601>`_, or `None` for a `UNIX
 timestamp <http://en.wikipedia.org/wiki/Unix_time>`_.
 :param bool utc: Whether timestamp should be in UTC or local time.

 >>> from structlog.processors import TimeStamper
 >>> TimeStamper()(None, None, {}) # doctest: +SKIP
 {'timestamp': 1378994017}
 >>> TimeStamper(fmt='iso')(None, None, {}) # doctest: +SKIP
 {'timestamp': '2013-09-12T13:54:26.996778Z'}
 >>> TimeStamper(fmt='%Y')(None, None, {}) # doctest: +SKIP
 {'timestamp': '2013'}
 """
 def __init__(self, fmt=None, utc=True):
 pass # pragma: nocover -- never used, just for sphinx

 def __new__(cls, fmt=None, utc=True):
 if fmt is None and not utc:
 raise ValueError('UNIX timestamps are always UTC.')

 now_method = getattr(datetime.datetime, 'utcnow' if utc else 'now')
 if fmt is None:
 def stamper(self, _, __, event_dict):
 event_dict['timestamp'] = calendar.timegm(time.gmtime())
 return event_dict
 elif fmt.upper() == 'ISO':
 if utc:
 def stamper(self, _, __, event_dict):
 event_dict['timestamp'] = now_method().isoformat() + 'Z'
 return event_dict
 else:
 def stamper(self, _, __, event_dict):
 event_dict['timestamp'] = now_method().isoformat()
 return event_dict
 else:
 def stamper(self, _, __, event_dict):
 event_dict['timestamp'] = now_method().strftime(fmt)
 return event_dict

 return type('TimeStamper', (object,), {'__call__': stamper})()

 © Copyright 2013, Hynek Schlawack.
 Created using Sphinx 1.1.3.

 Brought to you by Read the Docs

 		latest

 		0.2.0-0

 		0.1.0

_static/minus.png

_static/comment-bright.png

_modules/structlog/stdlib.html

 Navigation

 		
 index

 		
 modules |

 		structlog documentation »

 		Module code »

 		structlog »

 Source code for structlog.stdlib

Copyright 2013 Hynek Schlawack
#
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
#
http://www.apache.org/licenses/LICENSE-2.0
#
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.

"""
Processors and helpers specific to the `logging module
<http://docs.python.org/2/library/logging.html>`_ from the `Python standard
library <http://docs.python.org/>`_.
"""

from __future__ import absolute_import, division, print_function

import logging
import sys

from structlog._exc import DropEvent

[docs]class LoggerFactory(object):
 """
 Build a standard library logger when an *instance* is called.

 >>> from structlog import configure
 >>> from structlog.stdlib import LoggerFactory
 >>> configure(logger_factory=LoggerFactory())
 """
[docs] def __call__(self):
 """
 Deduces the caller's module name and create a stdlib logger.

 :rtype: `logging.Logger`
 """
 return logging.getLogger(
 sys._getframe().f_back.f_back.f_globals['__name__']
)

Adapted from the stdlib

CRITICAL = 50
FATAL = CRITICAL
ERROR = 40
WARNING = 30
WARN = WARNING
INFO = 20
DEBUG = 10
NOTSET = 0

_nameToLevel = {
 'critical': CRITICAL,
 'error': ERROR,
 'warn': WARNING,
 'warning': WARNING,
 'info': INFO,
 'debug': DEBUG,
 'notset': NOTSET,
}

[docs]def filter_by_level(logger, name, event_dict):
 """
 Check whether logging is configured to accept messages from this log level.

 Should be the first processor if stdlib's filtering by level is used so
 possibly expensive processors like exception formatters are avoided in the
 first place.

 >>> import logging
 >>> from structlog.stdlib import filter_by_level
 >>> logging.basicConfig(level=logging.WARN)
 >>> logger = logging.getLogger()
 >>> filter_by_level(logger, 'warn', {})
 {}
 >>> filter_by_level(logger, 'debug', {})
 Traceback (most recent call last):
 ...
 DropEvent
 """
 if logger.isEnabledFor(_nameToLevel[name]):
 return event_dict
 else:
 raise DropEvent

 © Copyright 2013, Hynek Schlawack.
 Created using Sphinx 1.1.3.

 Brought to you by Read the Docs

 		latest

 		0.2.0-0

 		0.1.0

search.html

 Navigation

 		
 index

 		
 modules |

 		structlog documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2013, Hynek Schlawack.
 Created using Sphinx 1.1.3.

 Brought to you by Read the Docs

 		latest

 		0.2.0-0

 		0.1.0

intro.html

 Navigation

 		
 index

 		
 modules |

 		structlog documentation »

 structlog makes structured logging in Python easy by augmenting your existing logger.
It’s licensed under the permissive Apache License, version 2 [http://choosealicense.com/licenses/apache/], available from PyPI [https://pypi.python.org/pypi/structlog/], and the source code can be found on GitHub [https://github.com/hynek/structlog].

Full documentation can be found at http://www.structlog.org/.
Find out what’s new from the changelog [http://www.structlog.org/en/latest/changelog.html]!

structlog targets Python 2.6, 2.7, 3.2, and 3.3 as well as PyPy with no additional dependencies for core functionality.

If you need any help, visit us on #structlog on Freenode [http://freenode.net]!

 © Copyright 2013, Hynek Schlawack.
 Created using Sphinx 1.1.3.

 Brought to you by Read the Docs

 		latest

 		0.2.0-0

 		0.1.0

_static/comment-close.png

_static/up-pressed.png

_static/up.png

_modules/index.html

 Navigation

 		
 index

 		
 modules |

 		structlog documentation »

 All modules for which code is available

		structlog

		structlog.processors

		structlog.stdlib

		structlog.threadlocal

		structlog.twisted

 © Copyright 2013, Hynek Schlawack.
 Created using Sphinx 1.1.3.

 Brought to you by Read the Docs

 		latest

 		0.2.0-0

 		0.1.0

_modules/structlog.html

 Navigation

 		
 index

 		
 modules |

 		structlog documentation »

 		Module code »

 Source code for structlog

Copyright 2013 Hynek Schlawack
#
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
#
http://www.apache.org/licenses/LICENSE-2.0
#
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.

"""
Painless structured logging.
"""

from __future__ import absolute_import, division, print_function

__version__ = '0.2.0'

from structlog import (
 processors,
 stdlib,
 threadlocal,
)
from structlog._config import (
 configure,
 configure_once,
 getLogger,
 get_logger,
 reset_defaults,
 wrap_logger,
)
from structlog._exc import (
 DropEvent,
)
from structlog._loggers import (
 BoundLogger,
 PrintLogger,
 ReturnLogger,
)

try:
 from structlog import twisted
except ImportError: # pragma: nocover
 twisted = None

__all__ = [
 BoundLogger,
 DropEvent,
 PrintLogger,
 ReturnLogger,
 configure,
 configure_once,
 getLogger,
 get_logger,
 reset_defaults,
 processors,
 stdlib,
 threadlocal,
 twisted,
 wrap_logger,
]

 © Copyright 2013, Hynek Schlawack.
 Created using Sphinx 1.1.3.

 Brought to you by Read the Docs

 		latest

 		0.2.0-0

 		0.1.0

_modules/structlog/twisted.html

 Navigation

 		
 index

 		
 modules |

 		structlog documentation »

 		Module code »

 		structlog »

 Source code for structlog.twisted

Copyright 2013 Hynek Schlawack
#
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
#
http://www.apache.org/licenses/LICENSE-2.0
#
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.

"""
Processors and tools specific to the `Twisted <http://twistedmatrix.com/>`_
networking engine.
"""

from __future__ import absolute_import, division, print_function

import sys
import json

from twisted.python.failure import Failure
from twisted.python.log import ILogObserver, textFromEventDict
from zope.interface import implementer

from structlog._compat import string_types
from structlog._utils import until_not_interrupted
from structlog.processors import (
 KeyValueRenderer,
 # can't import processors module because of circular imports
 JSONRenderer as _JSONRenderer
)

[docs]class LoggerFactory(object):
 """
 Build a Twisted logger when an *instance* is called.

 >>> from structlog import configure
 >>> from structlog.twisted import LoggerFactory
 >>> configure(logger_factory=LoggerFactory())
 """
 def __call__(self, name=None):
 """
 :rvalue: A new Twisted logger.
 """
 from twisted.python import log
 return log

_FAIL_TYPES = (BaseException, Failure)

def _extractStuffAndWhy(eventDict):
 """
 Removes all possible *_why*s and *_stuff*s, analyzes exc_info and returns
 a tuple of `(_stuff, _why, eventDict)`.

 Modifies *eventDict*!
 """
 _stuff = eventDict.pop('_stuff', None)
 _why = eventDict.pop('_why', None)
 event = eventDict.pop('event', None)
 if (
 isinstance(_stuff, _FAIL_TYPES) and
 isinstance(event, _FAIL_TYPES)
):
 raise ValueError('Both _stuff and event contain an Exception/Failure.')
 # `log.err('event', _why='alsoEvent')` is ambiguous.
 if _why and isinstance(event, string_types):
 raise ValueError('Both `_why` and `event` supplied.')
 # Two failures are ambiguous too.
 if not isinstance(_stuff, _FAIL_TYPES) and isinstance(event, _FAIL_TYPES):
 _why = _why or 'error'
 _stuff = event
 if isinstance(event, string_types):
 _why = event
 if not _stuff and sys.exc_info() != (None, None, None):
 _stuff = Failure()
 # Either we used the error ourselves or the user supplied one for
 # formatting. Avoid log.err() to dump another traceback into the log.
 if isinstance(_stuff, BaseException):
 _stuff = Failure(_stuff)
 sys.exc_clear()
 return _stuff, _why, eventDict

[docs]class JSONRenderer(_JSONRenderer):
 """
 Behaves like :class:`structlog.processors.JSONRenderer` except that it
 formats tracebacks and failures itself if called with `err()`.

 Not an adapter like :class:`EventAdapter` but a real formatter. Nor does
 it require to be adapted using it.

 Use together with a :func:`withJSONObserver`-wrapped Twisted logger like
 :func:`plainJSONStdOutLogger` for pure-JSON logs.
 """
 def __call__(self, logger, name, eventDict):
 _stuff, _why, eventDict = _extractStuffAndWhy(eventDict)
 if name == 'err':
 eventDict['event'] = _why
 if isinstance(_stuff, Failure):
 eventDict['exception'] = _stuff.getTraceback(detail='verbose')
 _stuff.cleanFailure()
 else:
 eventDict['event'] = _why
 return ((_JSONRenderer.__call__(self, logger, name, eventDict),),
 {'_structlog': True})

@implementer(ILogObserver)
[docs]class PlainFileLogObserver(object):
 """
 Write only the the plain message without timestamps or anything else.

 Great to just print JSON to stdout where you catch it with something like
 runit.

 :param file file: File to print to.

 .. versionadded:: 0.2.0
 """
 def __init__(self, file):
 self._write = file.write
 self._flush = file.flush

 def __call__(self, eventDict):
 until_not_interrupted(self._write, textFromEventDict(eventDict) + '\n')
 until_not_interrupted(self._flush)

@implementer(ILogObserver)
[docs]class JSONLogObserverWrapper(object):
 """
 Wrap a log *observer* and render non-:class:`JSONRenderer` entries to JSON.

 :param ILogObserver observer: Twisted log observer to wrap. For example
 :class:`PlainFileObserver` or Twisted's stock `FileLogObserver
 <http://twistedmatrix.com/documents/current/api/twisted.python.log.
 FileLogObserver.html>`_

 .. versionadded:: 0.2.0
 """
 def __init__(self, observer):
 self._observer = observer

 def __call__(self, eventDict):
 if '_structlog' not in eventDict:
 eventDict['message'] = (json.dumps({
 'event': textFromEventDict(eventDict),
 'system': eventDict.get('system'),
 }),)
 eventDict['_structlog'] = True
 return self._observer(eventDict)

[docs]def plainJSONStdOutLogger():
 """
 Return a logger that writes only the message to stdout.

 Transforms non-:class:`~structlog.twisted.JSONRenderer` messages to JSON.

 Ideal for JSONifying log entries from Twisted plugins and libraries that
 are outside of your control::

 $ twistd -n --logger structlog.twisted.plainJSONStdOutLogger web
 {"event": "Log opened.", "system": "-"}
 {"event": "twistd 13.1.0 (python 2.7.3) starting up.", "system": "-"}
 {"event": "reactor class: twisted...EPollReactor.", "system": "-"}
 {"event": "Site starting on 8080", "system": "-"}
 {"event": "Starting factory <twisted.web.server.Site ...>", ...}
 ...

 Composes :class:`PlainFileLogObserver` and :class:`JSONLogObserverWrapper`
 to a usable logger.

 .. versionadded:: 0.2.0
 """
 return JSONLogObserverWrapper(PlainFileLogObserver(sys.stdout))

[docs]class EventAdapter(object):
 """
 Adapt an ``event_dict`` to Twisted logging system.

 Particularly, make a wrapped `twisted.python.log.err
 <http://twistedmatrix.com/documents/current/
 api/twisted.python.log.html#err>`_ behave as expected.

 :param callable dictRenderer: Renderer that is used for the actual
 log message. Please note that structlog comes with a dedicated
 :class:`JSONRenderer`.

 Must be the last processor in the chain and requires a `dictRenderer`
 for the actual formatting as an constructor argument in order to be able to
 fully support the original behaviors of ``log.msg()`` and ``log.err()``.
 """
 def __init__(self, dictRenderer=None):
 """
 :param dictRenderer: A processor used to format the log message.
 """
 self._dictRenderer = dictRenderer or KeyValueRenderer()

 def __call__(self, logger, name, eventDict):
 if name == 'err':
 # This aspires to handle the following cases correctly:
 # - log.err(failure, _why='event', **kw)
 # - log.err('event', **kw)
 # - log.err(_stuff=failure, _why='event', **kw)
 _stuff, _why, eventDict = _extractStuffAndWhy(eventDict)
 eventDict['event'] = _why
 return ((), {
 '_stuff': _stuff,
 '_why': self._dictRenderer(logger, name, eventDict),
 })
 else:
 return self._dictRenderer(logger, name, eventDict)

 © Copyright 2013, Hynek Schlawack.
 Created using Sphinx 1.1.3.

 Brought to you by Read the Docs

 		latest

 		0.2.0-0

 		0.1.0

_static/plus.png

_static/down.png

_static/comment.png

_static/ajax-loader.gif

_modules/structlog/threadlocal.html

 Navigation

 		
 index

 		
 modules |

 		structlog documentation »

 		Module code »

 		structlog »

 Source code for structlog.threadlocal

Copyright 2013 Hynek Schlawack
#
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
#
http://www.apache.org/licenses/LICENSE-2.0
#
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.

"""
Primitives to keep context global but thread (and greenlet) local.
"""

from __future__ import absolute_import, division, print_function

import contextlib
import uuid

from structlog._config import BoundLoggerLazyProxy

try:
 from greenlet import getcurrent
except ImportError: # pragma: nocover
 from threading import local as ThreadLocal
else:
 class ThreadLocal(object): # pragma: nocover
 """
 threading.local() replacement for greenlets.
 """
 def __init__(self):
 self.__dict__["_prefix"] = str(id(self))

 def __getattr__(self, name):
 return getattr(getcurrent(), self._prefix + name)

 def __setattr__(self, name, val):
 setattr(getcurrent(), self._prefix + name, val)

 def __delattr__(self, name):
 delattr(getcurrent(), self._prefix + name)

[docs]def wrap_dict(dict_class):
 """
 Wrap a dict-like class and return the resulting class.

 The wrapped class and used to keep global in the current thread.

 :param type dict_class: Class used for keeping context.

 :rtype: `type`
 """
 Wrapped = type('WrappedDict-' + str(uuid.uuid4()),
 (_ThreadLocalDictWrapper,), {})
 Wrapped._tl = ThreadLocal()
 Wrapped._dict_class = dict_class
 return Wrapped

[docs]def as_immutable(logger):
 """
 Extract the context from a thread local logger into an immutable logger.

 :param BoundLogger logger: A logger with *possibly* thread local state.
 :rtype: :class:`~structlog.BoundLogger` with an immutable context.
 """
 if isinstance(logger, BoundLoggerLazyProxy):
 logger = logger.bind()

 try:
 ctx = logger._context._tl.dict_.__class__(logger._context._dict)
 bl = logger.__class__(
 logger._logger,
 processors=logger._processors,
 context={},
)
 bl._context = ctx
 return bl
 except AttributeError:
 return logger

@contextlib.contextmanager
[docs]def tmp_bind(logger, **tmp_values):
 """
 Bind *tmp_values* to *logger* & memorize current state. Rewind afterwards.

 >>> from structlog import wrap_logger, PrintLogger
 >>> from structlog.threadlocal import tmp_bind, wrap_dict
 >>> logger = wrap_logger(PrintLogger(), context_class=wrap_dict(dict))
 >>> with tmp_bind(logger, x=5) as tmp_logger:
 ... logger = logger.bind(y=3)
 ... tmp_logger.msg('event')
 y=3 x=5 event='event'
 >>> logger.msg('event')
 event='event'
 """
 saved = as_immutable(logger)._context
 yield logger.bind(**tmp_values)
 logger._context.clear()
 logger._context.update(saved)

class _ThreadLocalDictWrapper(object):
 """
 Wrap a dict-like class and keep the state *global* but *thread-local*.

 Attempts to re-initialize only updates the wrapped dictionary.

 Useful for short-lived threaded applications like requests in web app.

 Use :func:`wrap` to instantiate and use
 :func:`structlog._loggers.BoundLogger.new` to clear the context.
 """
 def __init__(self, *args, **kw):
 """
 We cheat. A context dict gets never recreated.
 """
 if args and isinstance(args[0], self.__class__):
 # our state is global, no need to look at args[0] if it's of our
 # class
 self._dict.update(**kw)
 else:
 self._dict.update(*args, **kw)

 @property
 def _dict(self):
 """
 Return or create and return the current context.
 """
 try:
 return self.__class__._tl.dict_
 except AttributeError:
 self.__class__._tl.dict_ = self.__class__._dict_class()
 return self.__class__._tl.dict_

 def __repr__(self):
 return '<{0}({1!r})>'.format(self.__class__.__name__, self._dict)

 def __eq__(self, other):
 # Same class == same dictionary
 return self.__class__ == other.__class__

 def __ne__(self, other):
 return not self.__eq__(other)

 # Proxy methods necessary for structlog.
 # Dunder methods don't trigger __getattr__ so we need to proxy by hand.
 def __iter__(self):
 return self._dict.__iter__()

 def __setitem__(self, key, value):
 self._dict[key] = value

 def __delitem__(self, key):
 self._dict.__delitem__(key)

 def __len__(self):
 return self._dict.__len__()

 def __getattr__(self, name):
 method = getattr(self._dict, name)
 setattr(self, name, method)
 return method

 © Copyright 2013, Hynek Schlawack.
 Created using Sphinx 1.1.3.

 Brought to you by Read the Docs

 		latest

 		0.2.0-0

 		0.1.0

_static/file.png

_static/down-pressed.png

